K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

Ta có: AE’ = AF’, BD’ = BF’, CD’ = CE’ (tính chất hai tiếp tuyến cắt nhau).

Suy ra

AE’ + AF’ = (AC + CE’) + (AB + BF’)

= (AC + CD’) + (AB + BD’) = AC + BC + AB = 2p.

Do đó: AE’ = AF’ = p.  

22 tháng 8 2021

Ta có: AE’ = AF’, BD’ = BF’, CD’ = CE’ (tính chất hai tiếp tuyến cắt nhau).

Suy ra

AE’ + AF’ = (AC + CE’) + (AB + BF’)

= (AC + CD’) + (AB + BD’) = AC + BC + AB = 2p.

Do đó: AE’ = AF’ = p.  

 
 
27 tháng 11 2021

                                                                BÀI LÀM

a, xét tứ giác ADOE có:

góc A= góc E=góc D=90O

mà ta thấy: OE=OD( bán kính = nhau)

vậy tứ giác ADOE là hình vuông (dhnb)

 

 

27 tháng 11 2021

a) Dễ thấy tứ giác AEOD là hình chữ nhật (tứ giác có 3 góc vuông).
Mà OD = OE ( cùng bằng bán kính đường tròn nội tiếp tam giác ABC).
Nên tứ giác AEOD là hình vuông.
b) Gọi H là chân đường vuông góc kẻ từ O xuống BC.

Có SΔABC=SΔOAB+SΔOBC+SΔOAC
                     =12 OD.AB+12 OE.AC+12 OH.BC
                      =12 r.(AB+AC+BC)
                      =12 pr (pp là  chu vi của tam giác ABCABCrr là bán kính đường tròn nội tiếp).
 
c) Áp dụng định lý Pi-ta-go ta có: BC=AB2+AC2=10(cm).
Diện tích tam giác ABC là: 12 AB.AC=12 .6.8=24(cm2).
Chu vi tam giác ABC là: 6+8+10=24(cm).
Suy ra: 24=12 .24.rr=2(cm).

4 tháng 10 2018

a, Áp dụng tính chất 2 tiếp tuyến tại A,B,C ta chứng minh được  b + c - a 2 = AD

b,  S A B C = S A I B + S B I C + S C I A

Mà ID = IE = IF = r =>  S A B C  = p.r

c, Vì AM là phân giác của  B A C ^ =>  B M M C = B A A C

Áp dụng tính chất tỉ lệ thức thu được BM = a c c + b

6 tháng 2 2019

a, Ta đã chứng minh được: AE =  b + c - a 2

=> AE =  a + b + c - 2 a 2 = p – a

∆AIE có IE = EA.tan B A C ^ 2

= (p – a).tan B A C ^ 2

b, Chú ý: BI ⊥ FD và CIE. Ta có:

B I C ^ = 180 0 - I B C ^ + I C D ^ =  180 0 - 1 2 A B C ^ + A C B ^

180 0 - 1 2 180 0 - B A C ^ =  90 0 + B A C ^ 2

Mà:  E D F ^ = 180 0 - B I C ^ = 90 0 - α 2

c, BH,AI,CK  cùng vuông góc với EF nên chúng song song =>  H B A ^ = I A B ^  (2 góc so le trong)

và  K C A ^ = I A C ^ mà  I A B ^ = I A C ^ nên  H B A ^ = K C A ^

Vậy: ∆BHF:∆CKE

d, Do BH//DP//CK nên  B D D C = H P P K mà DB = DF và CD = CE

=>  H P P K = B F C E = B H C K => ∆BPH:∆CPK =>  B P H ^ = C P E ^

Lại có:  B F P ^ = C E F ^ => ∆BPF:∆CEP (g.g)

mà  B P D ^ = C P D ^ => PD là phân giác của  B P C ^