\(\widehat{xOy}\) tại A và B. Vẽ đường tròn (O...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2021

Ta có \(\widehat{EBD}=\widehat{BCA}-\widehat{BDC}=180^o-\dfrac{\widehat{BOA}}{2}-\dfrac{\widehat{BIA}}{2}=180^o-\dfrac{180^o}{2}=90^o\).

Do đó DE là đường kính của đường tròn (I) nên D, I, E thẳng hàng.

 

29 tháng 5 2019

O A B C E I D F
a) xét tứ giác ABOC, ta có:
\(\widehat{OBA}=90^O\)
\(\widehat{OCA}=90^O\)
=> \(\widehat{OBA}+\widehat{OCA}=180^O \)
=> tứ giác ABOC nội tiếp
b) Xét tam giác OBC, ta có:
OB = OC = R 
=> tam giác OBC cân tại O
=> OE vừa là đường cao vừa là đường phân giác dường phân giác góc O.
=> BE = CE 
=> OA vuông góc BC ( đường kính đi qua trung điểm của dây cung thì vuông góc với dây đó)
Xét tam giác AOB và tam giác ABE, ta có:
góc A chung
góc OBA = BEA = 90o
=>AOB đồng dạng ABE
=> \(\frac{AB}{AE}=\frac{OB}{BE}\)
=>AB.BE = OB.AE
câu c và d cậu tự làm nhé tớ ko giải dc xin lỗi cậu nha

6 tháng 1 2017

 ta có : góc BEA =90 độ ( chắn nửa đt tâm O) 
góc ADC = 90độ ( chắn nửa đt tâm O') 
=> góc BEC = góc BDC 
mà 2 góc này cùng nhìn cung BC 
=> tgnt => B,C,D,E thuộc 1 đt 
2/ta có góc BFA =90 ( chắn nửa đt tâm O) 
=> BF vuông góc AF(1) 
góc AFC =90(chắn nửa đt tâm O') 
=>AF vuông góc CF(2) 
(1)(2) => BF // CF 
=> B, F,C thẳng hàng 
ta có : tg BEAF nt => góc EBA = EFA(3) 
tg ADCF nt => góc AFD = ACD(4) 
tg BEDC nt => góc EBD = ECD(5) 
từ (3)(4)(5)=> góc EFA =AFD 
=> FA là p/g EFD