\(x^2+y^2-6x+2y+6=0\) và điểm \(A\left(1;3\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

a) \(\left(C\right)\) có tâm \(I\left(3;-1\right)\) và có bán kính \(R=2\), ta có :

\(IA=\sqrt{\left(3-1\right)^2+\left(-1-3\right)^2}=2\sqrt{5}\)

\(IA>R\), vậy A nằm ngoài (C)

b) \(\Delta_1:3x+4y-15=0;\Delta_2:x-1=0\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

19 tháng 5 2017

a) \(y+1=0\) hay \(15x+8y-112=0\)

b) \(MN=\dfrac{30}{\sqrt{34}}\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

9 tháng 6 2022

bvtiv

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

Ôn tập cuối năm môn Hình học

NV
29 tháng 5 2020

Đường tròn tâm \(I\left(3;-1\right)\) bán kính \(R=\sqrt{3^2+\left(-1\right)^2-6}=2\)

\(\overrightarrow{IA}=\left(-2;4\right)\Rightarrow IA=\sqrt{\left(-2\right)^2+4^2}=2\sqrt{5}>R\)

\(\Rightarrow A\) nằm ngoài đường tròn

Gọi phương trình tiếp tuyến d qua A có dạng:

\(a\left(x-1\right)+b\left(y-3\right)=0\Leftrightarrow ax+by-a-3b=0\) (với \(a^2+b^2\ne0\))

d tiếp xúc (C) \(\Leftrightarrow d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|3a-b-a-3b\right|}{\sqrt{a^2+b^2}}=2\Leftrightarrow\left|a-2b\right|=\sqrt{a^2+b^2}\)

\(\Leftrightarrow\left(a-2b\right)^2=a^2+b^2\)

\(\Leftrightarrow a^2-4ab+4b^2=a^2+b^2\)

\(\Leftrightarrow3b^2-4ab=0\Rightarrow\left[{}\begin{matrix}b=0\\3b=4a\end{matrix}\right.\)

Chọn \(b=4\Rightarrow a=3\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}x-1=0\\3x+4y-15=0\end{matrix}\right.\)

20 tháng 5 2017

Ôn tập cuối năm môn Hình học

NV
16 tháng 6 2020

Không phải, bạn chưa học cách viết pttt tại 1 điểm bằng phương pháp "tách đôi tọa độ" à?

Tiếp tuyến của đường tròn (C) có pt: \(\left(x-a\right)^2+\left(y-b\right)^2=R^2\)

tại điểm M nằm trên đường tròn \(M\left(x_M;y_M\right)\) luôn có dạng:

\(\left(x-a\right)\left(x_M-a\right)+\left(x-b\right)\left(x_M-b\right)=R^2\)

NV
16 tháng 6 2020

Phương trình (C): \(\left(x-3\right)^2+\left(y+1\right)^2=4\)

Đường tròn (C) tâm \(I\left(3;-1\right)\) bán kính \(R=2\)

\(\overrightarrow{AI}=\left(2;-4\right)\Rightarrow AI=2\sqrt{5}\)

Phương trình tiếp tuyến qua \(T_1\) có dạng:

\(\left(x-3\right)\left(x_{T1}-3\right)+\left(y+1\right)\left(y_{T1}+1\right)=4\)

Do tiếp tuyến qua A nên:

\(-2\left(x_{T1}-3\right)+4\left(y_{T1}+1\right)=4\Leftrightarrow x_{T1}-2y_{T1}-3=0\) (1)

Tiếp tuyến qua \(T_2\): \(\left(x-3\right)\left(x_{T2}-3\right)+\left(y+1\right)\left(y_{T2}+1\right)=4\)

Do tiếp tuyến qua A nên:

\(-2\left(x_{T2}-3\right)+4\left(y_{T2}+1\right)=4\Leftrightarrow x_{T2}-2y_{T2}-3=0\) (2)

Từ (1); (2) \(\Rightarrow T_1;T_2\) thuộc đường thẳng có pt: \(x-2y-3=0\)

Gọi H là trung điểm \(T_1T_2\Rightarrow\left\{{}\begin{matrix}IH\perp T_1T_2\\HT_1=HT_2\end{matrix}\right.\)

\(IH=d\left(I;T_1T_2\right)=\frac{\left|3-2\left(-1\right)-3\right|}{\sqrt{1^2+\left(-2\right)^2}}=\frac{2}{\sqrt{5}}\)

\(\Rightarrow HT_1=\sqrt{R^2-IH^2}=\frac{3\sqrt{10}}{5}\Rightarrow T_1T_2=\frac{6\sqrt{10}}{5}\)

\(AH=AI-IH=\frac{8\sqrt{5}}{5}\)

\(S_{AT_1T_2}=\frac{1}{2}AH.T_1T_2=\frac{24\sqrt{2}}{5}\)

26 tháng 4 2017

M N d d d1 d2 I

a) Tọa độ giao điểm của (C) và d là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}x^2+y^2-x-7y=0\left(1\right)\\3x+4y-3=0\left(2\right)\end{matrix}\right.\)

Từ (2) => \(x=\dfrac{3-4y}{3}\) thay vào (1) ta được:

\(\left(\dfrac{3-4y}{3}\right)^2+y^2-\dfrac{3-4y}{3}-7y=0\)

<=> 16y2-24y+9+9y2-9+12y-63y=0

<=>25y2-75y=0

<=> y=0=>x=1

hoặc y=3=>x=-3

Gọi 2 giao điểm là M và N =>tọa độ M(1;0) và N(-3;3)

b) Viết lại phương trình (C): \(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{7}{2}\right)^2=\dfrac{25}{2}\)

=>tọa độ tâm I(0,5;3,5)

Gọi d1,d2 là các tiếp tuyến tại M và N

VTPT của d1 là: \(\overrightarrow{IM}=\left(\dfrac{1}{2};-\dfrac{7}{2}\right)\) và M thuộc d1

=> phương trình d1: \(\dfrac{1}{2}\left(x-1\right)-\dfrac{7}{2}y=0\)

hay d1: x-7y-1=0

Bằng cách tính tương tự ta được phương trình tiếp tuyến d2:

d2:7x+y+18=0

c)Tọa độ giao điểm d1 và d2 là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-7y-1=0\\7x+y+18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)

=>tọa độ giao điểm là (-2,5;-0,5)

22 tháng 4 2017

Đường tròn tâm O(a,b)

\(\Delta_1\) đi qua \(AB..\Delta_1:\left(x-1\right)-\left(y-2\right)=x-y+1=0\)

\(\Delta_2\) trung trực AB: \(\Delta_2:\left(x-2\right)+\left(y-3\right)=x+y-5=0\)

Tâm (c) phải thuộc \(\Delta_2\) =>O(a,5-a)

Gọi I là điểm tiếp xúc \(\Delta\) và (C) ta có hệ pt

\(\Rightarrow\left\{{}\begin{matrix}OA=OB=\sqrt{\left(a-1\right)^2+\left(5-a-3\right)^2}=R\\OI=\left|3a+\left(5-a\right)-3\right|=\sqrt{10}R\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a^2-2a+1+a^2-4a+4=R^2\\\left(2a+2\right)^2=10R^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a^2-6a+5=R^2\\4a^2+8a+4=10R^2\end{matrix}\right.\)

Lấy [(1) nhân 5] trừ [(2) chia 2]

\(\Leftrightarrow8a^2-32a+23=0\left\{\Delta=16^2-8.23=8.32-8.23=8\left(32-23\right)=2.4.9\right\}\) đề số lẻ thế nhỉ

\(\Rightarrow a=\left[{}\begin{matrix}\dfrac{16-6\sqrt{2}}{8}=2-\dfrac{3\sqrt{2}}{4}\\\dfrac{16+6\sqrt{2}}{8}=2+\dfrac{3\sqrt{2}}{4}\end{matrix}\right.\)

\(\Rightarrow b=\left[{}\begin{matrix}3+\dfrac{3\sqrt{2}}{4}\\3-\dfrac{3\sqrt{2}}{4}\end{matrix}\right.\) \(\Rightarrow R^2=\left[{}\begin{matrix}\dfrac{\left(6-\dfrac{3\sqrt{2}}{2}\right)^2}{10}\\\dfrac{\left(6+\dfrac{3\sqrt{2}}{2}\right)^2}{10}\end{matrix}\right.\)

(C) =(x-2+3sqrt(2)/4)^2 +(y-3-3sqrt(2)/4)^2 =(6-3sqrt(2)/2)^2/10