Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi
Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)
\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:
\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)
\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)
\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)
Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)
(d')//(d)
=>(d'): 4x-3y+c=0
(C): x^2-4x+4+y^2+6y+9-16=0
=>(x-2)^2+(y+3)^2=16
=>R=4; I(2;-3)
Theo đề, ta có: d(I;(d'))=4
=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)
=>|c+17|=4*5=20
=>c=3 hoặc c=-37
* Xét đường tròn (C): x 2 + y 2 - 4x + 2y + 2 = 0
ta có:
* Phương trình đường thẳng Δ kẻ từ M(3; 1) có dạng:
a(x - 3) + b(y - 1) = 0 ⇔ ax - 3a + by - b = 0 ⇔ ax + by - 3a - b = 0
* Vì đường thẳng Δ là tiếp tuyến của đường tròn (C) nên ta có:
Vậy phương trình tiếp tuyến kẻ từ M(3;1) đến đường tròn (C): x 2 + y 2 - 4x + 2y + 2 = 0 là:
(2 + 6 )x + 2y - 8 - 3 6 = 0 hoặc (2 - 6 )x + 2y - 8 + 3 6 = 0
Đường tròn (C) có tâm I (3 ; 3) và có bán kính
\(R = \sqrt {{a^2} + {b^2} - c} = \sqrt {9 + 9 - 14} = 2\)
Điểm M(x;0) thuộc Ox.
Từ M kẻ hai tiếp tuyến tiếp xúc với (C) tại A và B. Ta có:
\(\widehat {AMB} = {60^ \circ } \Rightarrow \widehat {IMB} = {30^ \circ }\)
\(\Rightarrow IM = {R \over {\sin {{30}^ \circ }}} = 2R = 4\)
\(IM = 4 \Leftrightarrow \sqrt {{{\left( {x - 3} \right)}^2} + 9} = 4\)
\(\Leftrightarrow {x^2} - 6x + 2 = 0\)
\(\Leftrightarrow x = 3 \pm \sqrt 7\)
Vậy có hai điểm M thỏa mãn đề bài, chúng có tọa độ là :
\({M_1}\left( {3 + \sqrt 7 ;0} \right)\) và \({M_2}\left( {3 - \sqrt 7 ;0} \right)\)
\(\left(C\right):\) \(\left(x-1\right)^2+\left(y+3\right)^2=5\) \(\Rightarrow\left\{{}\begin{matrix}I\left(1;-3\right)\\R=\sqrt{5}\end{matrix}\right.\)
a/ Gọi \(d'//d\) \(\Rightarrow\) phương trình d' có dạng: \(2x+y+c=0\)
Do d' tiếp xúc (C) \(\Rightarrow d\left(I;d'\right)=R\)
\(\Leftrightarrow\frac{\left|2.1-3.1+c\right|}{\sqrt{2^2+1^2}}=\sqrt{5}\) \(\Leftrightarrow\left|c-1\right|=5\Rightarrow\left[{}\begin{matrix}c=6\\c=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x+y+6=0\\2x+y-4=0\end{matrix}\right.\)
- Với \(2x+y+6=0\Rightarrow y=-2x-6\)
\(\Rightarrow x^2+\left(-2x-6\right)^2-2x+6\left(-2x-6\right)+5=0\)
\(\Rightarrow x=-1\Rightarrow y=-4\Rightarrow A\left(-1;-4\right)\)
- Với \(2x+y-4=0\Rightarrow y=4-2x\)
\(\Rightarrow x^2+\left(4-2x\right)^2-2x+6\left(4-2x\right)+5=0\)
\(\Rightarrow x=3\Rightarrow y=-2\Rightarrow B\left(3;-2\right)\)
b/
Gọi \(d_1\) là đường thẳng vuông góc với \(d\Rightarrow d_1\) có dạng: \(x-2y+c=0\)
Do \(d_1\) tiếp xúc (C) nên \(d\left(I;d_1\right)=R\)
\(\Leftrightarrow\frac{\left|1.1-2.\left(-3\right)+c\right|}{\sqrt{1^2+\left(-2\right)^2}}=\sqrt{5}\) \(\Leftrightarrow\left|c+7\right|=5\Rightarrow\left[{}\begin{matrix}c=-2\\c=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-2y-2=0\\x-2y-12=0\end{matrix}\right.\)
Bạn tự thay vào tính tiếp điểm như bài trên
Lời giải:
$x^2+y^2-2x+6y+6=0$
$\Leftrightarrow (x-1)^2+(y+3)^2=2^2$
Vậy PTĐT $(C)$ có tâm $I(1,-3)$ và bán kính $R=2$
Gọi $ax+by+c=0(*)$ là PT tiếp tuyến $(d)$
$A(-3;1)\in (d)\Rightarrow -3a+b+c=0(1)$
Vì $(d)$ là tiếp tuyến của $(C)$ nên:
$d(I, (d))=\frac{|ax_I+by_I+c|}{\sqrt{a^2+b^2}}=R$
$\Leftrightarrow \frac{|a-3b+c|}{\sqrt{a^2+b^2}}=2$
$\Rightarrow (a-3b+c)^2=4(a^2+b^2)(2)$
Từ $(1);(2)\Rightarrow (a-3b+3a-b)^2=4(a^2+b^2)$
$\Leftrightarrow 3a^2-8ab+3b^2=0$
$\Rightarrow$ \(a=\frac{4\pm \sqrt{7}}{3}b\)
\(\Rightarrow c=(3\pm \sqrt{7})b\)
Thay vào $(*)$ ta suy ra PTTT có dạng $\frac{4\pm \sqrt{7}}{3}x+y+(3\pm \sqrt{7}}=0$
Lời giải:
$x^2+y^2-2x+6y+6=0$
$\Leftrightarrow (x-1)^2+(y+3)^2=2^2$
Vậy PTĐT $(C)$ có tâm $I(1,-3)$ và bán kính $R=2$
Gọi $ax+by+c=0(*)$ là PT tiếp tuyến $(d)$
$A(-3;1)\in (d)\Rightarrow -3a+b+c=0(1)$
Vì $(d)$ là tiếp tuyến của $(C)$ nên:
$d(I, (d))=\frac{|ax_I+by_I+c|}{\sqrt{a^2+b^2}}=R$
$\Leftrightarrow \frac{|a-3b+c|}{\sqrt{a^2+b^2}}=2$
$\Rightarrow (a-3b+c)^2=4(a^2+b^2)(2)$
Từ $(1);(2)\Rightarrow (a-3b+3a-b)^2=4(a^2+b^2)$
$\Leftrightarrow 3a^2-8ab+3b^2=0$
$\Rightarrow$ \(a=\frac{4\pm \sqrt{7}}{3}b\)
\(\Rightarrow c=(3\pm \sqrt{7})b\)
Thay vào $(*)$ ta suy ra PTTT có dạng $\frac{4\pm \sqrt{7}}{3}x+y+(3\pm \sqrt{7}}=0$