K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2024

d) Gọi I là trung điểm BC,AI cắt EF tại K.H là hình chiếu vuông góc của K  trên BC. Chứng minh: AH luôn đi qua một điểm cố định

24 tháng 2 2020

Chúc bạn học tốt !!

27 tháng 1 2018

bài này trong đề thi hsg toán 9 huyện đan phượng năm nay nhé bạn

27 tháng 1 2018

Bn cho mk link vs ạ

24 tháng 2 2021

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra ΔΔBNA ~ ΔΔBCE (g.g) => BN.BE = BC.BA 

Cũng dễ có ΔΔBMA ~ ΔΔBCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay ILIE=constILIE=const. Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

25 tháng 9 2018

Ai làm hộ mình với

14 tháng 7 2019

A B O C D M E F K I N L

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA 

Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

1 tháng 11 2018

giúp em với ạ? hiccc :<