K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

Phương trình của (C) là  x 2 + y 2 − 6 x + 4 y − 12 = 0   ⇔ x − 3 2 + y + 2 2 = 25

Đường tròn này có tâm I(3; -2) và bán kính R = 5.

Ta có tiếp tuyến tại A(-1; 1):  đi qua A, nhận A I →    ( 4 ;    − 3 )  làm VTPT nên có phương trình:

4(x +1) – 3 (y -1 ) = 0 hay 4x – 3y + 7 = 0  ó  - 4x + 3y -  7 = 0

Đáp án A

12 tháng 4 2016

a)     Tâm I(2 ; -4), R = 5

b)    Đường tròn có phương trình:    (x – 2 )2 + (y + 4)2  = 25

Thế tọa độ A(-1 ; 0) vào vế trái, ta có :

(-1- 2 )2 + (0 + 4)2  = 32 + 42 = 25

Vậy A(-1 ;0) là điểm thuộc đường tròn.

Áp dụng công thức tiếp tuyến (Xem sgk)

Ta được pt tiếp tuyến với đường tròn tai A là:

(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25   <=>   3x – 4y + 3 = 0

Chú ý:

1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:

Vectơ    = (-3; 4)

Tiếp tuyến đi qua A(-1; 0) và nhận  làm một vectơ pháp tuyến có phương trình:

-3(x + 1) + 4(y – 0) = 0  ,<=> 3x – 4y + 3 = 0

26 tháng 4 2017

M N d d d1 d2 I

a) Tọa độ giao điểm của (C) và d là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}x^2+y^2-x-7y=0\left(1\right)\\3x+4y-3=0\left(2\right)\end{matrix}\right.\)

Từ (2) => \(x=\dfrac{3-4y}{3}\) thay vào (1) ta được:

\(\left(\dfrac{3-4y}{3}\right)^2+y^2-\dfrac{3-4y}{3}-7y=0\)

<=> 16y2-24y+9+9y2-9+12y-63y=0

<=>25y2-75y=0

<=> y=0=>x=1

hoặc y=3=>x=-3

Gọi 2 giao điểm là M và N =>tọa độ M(1;0) và N(-3;3)

b) Viết lại phương trình (C): \(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{7}{2}\right)^2=\dfrac{25}{2}\)

=>tọa độ tâm I(0,5;3,5)

Gọi d1,d2 là các tiếp tuyến tại M và N

VTPT của d1 là: \(\overrightarrow{IM}=\left(\dfrac{1}{2};-\dfrac{7}{2}\right)\) và M thuộc d1

=> phương trình d1: \(\dfrac{1}{2}\left(x-1\right)-\dfrac{7}{2}y=0\)

hay d1: x-7y-1=0

Bằng cách tính tương tự ta được phương trình tiếp tuyến d2:

d2:7x+y+18=0

c)Tọa độ giao điểm d1 và d2 là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-7y-1=0\\7x+y+18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)

=>tọa độ giao điểm là (-2,5;-0,5)

3 tháng 4 2016

M(2;-1)

 

NV
15 tháng 6 2020

Gọi tâm đường tròn là \(I\left(a;b\right)\)

\(\Rightarrow\overrightarrow{MI}=\left(a-2;b-3\right)\Rightarrow IM=\sqrt{\left(a-2\right)^2+\left(b-3\right)^2}\)

\(d\left(I;\Delta_1\right)=d\left(I;\Delta_2\right)\Leftrightarrow\frac{\left|3a-4b+1\right|}{\sqrt{3^2+\left(-4\right)^2}}=\frac{\left|4a+3b-7\right|}{\sqrt{4^2+3^2}}\)

\(\Leftrightarrow\left|3a-4b+1\right|=\left|4a+3b-7\right|\)

\(\Rightarrow\left[{}\begin{matrix}3a-4b+1=4a+3b-7\\3a-4b+1=-4a-3b+7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=8-7b\\b=7a-6\end{matrix}\right.\)

TH1: \(a=8-7b\)

\(d\left(I;\Delta_1\right)=R=IM\Leftrightarrow\frac{\left|3a-4b+1\right|}{\sqrt{3^2+\left(-4\right)^2}}=\sqrt{\left(a-2\right)^2+\left(b-3\right)^2}\)

\(\Leftrightarrow\frac{\left|25-25b\right|}{5}=\sqrt{\left(6-7b\right)^2+\left(b-3\right)^2}\)

\(\Leftrightarrow\left(5b-5\right)^2=\left(6-7b\right)^2+\left(b-3\right)^2\)

\(\Leftrightarrow5b^2-8b+4=0\) (vô nghiệm)

TH2: \(b=7a-6\)

\(d\left(I;\Delta_1\right)=IM\Leftrightarrow\frac{\left|3a-4b+1\right|}{5}=\sqrt{\left(a-2\right)^2+\left(b-3\right)^2}\)

\(\Leftrightarrow\left|5a-5\right|=\sqrt{\left(a-2\right)^2+\left(7a-9\right)^2}\)

\(\Leftrightarrow\left(5a-5\right)^2=\left(a-2\right)^2+\left(7a-9\right)^2\)

\(\Leftrightarrow5a^2-16a+12=0\Rightarrow\left[{}\begin{matrix}a=2\Rightarrow b=8\\a=\frac{6}{5}\Rightarrow b=\frac{12}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}I\left(2;8\right);R=IM=5\\I\left(\frac{6}{5};\frac{12}{5}\right);R=IM=1\end{matrix}\right.\)

Có 2 đường tròn thỏa mãn: \(\left[{}\begin{matrix}\left(x-2\right)^2+\left(y-8\right)^2=25\\\left(x-\frac{6}{5}\right)^2+\left(y-\frac{12}{5}\right)^2=1\end{matrix}\right.\)

4 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

NV
25 tháng 4 2020

Bài 2:

Đường tròn (C) tâm \(I\left(-2;-\frac{7}{2}\right)\) bán kính \(R=\frac{\sqrt{133}}{2}\)

Sao số xấu dữ vậy ta? Số to như vầy tính toán mệt lắm

Gọi tiếp tuyến d của đường tròn có dạng:

\(a\left(x-2\right)+b\left(y-6\right)=0\Leftrightarrow ax+by-2a-6b=0\)

d tiếp xúc (C) \(\Leftrightarrow d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|-2a-\frac{7}{2}b-2a-6b\right|}{\sqrt{a^2+b^2}}=\frac{\sqrt{133}}{2}\)

\(\Leftrightarrow\left|6a+19b\right|=\sqrt{133\left(a^2+b^2\right)}\)

\(\Leftrightarrow97a^2-228ab-288b^2=0\)

Chắc bạn ghi sai đề thật, nghiệm pt này xấu hủy hoại, chắc chẳng ai cho đề kiểu như vầy hết

NV
25 tháng 4 2020

Bài 1:

Gọi d' là đường thẳng qua A và vuông góc d

Phương trình d':

\(4\left(x-1\right)+3\left(y+7\right)=0\Leftrightarrow4x+3y+17=0\)

Tâm của (C) nằm trên d' nên tọa độ có dạng \(I\left(a;\frac{-4a-17}{3}\right)\Rightarrow\overrightarrow{AI}=\left(a-1;\frac{4-4a}{3}\right)\)

\(IA^2=R^2\Leftrightarrow\left(a-1\right)^2+\left(\frac{4-4a}{3}\right)^2=25\)

\(\Rightarrow\left(a-1\right)^2=9\Rightarrow\left[{}\begin{matrix}a=4\\a=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(4;-11\right)\\I\left(-2;-3\right)\end{matrix}\right.\)

Có 2 đường tròn thỏa mãn:

\(\left[{}\begin{matrix}\left(x-4\right)^2+\left(y+11\right)^2=25\\\left(x+2\right)^2+\left(y+3\right)^2=25\end{matrix}\right.\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

31 tháng 5 2017

a) Đường tròn (T) có tâm là điểm (2 ; 1) và có bán kính bằng \(\sqrt 2\)

b) \(-3\le m\le1\)

c) Có hai tiếp tuyến với (T) thỏa mãn đề bài là :

\({\Delta _1}:x + y - 1 = 0\)

\({\Delta _2}:x + y - 5 = 0\)