K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
BT
8 tháng 12 2017
Ta có: \(\Delta=16-12=4\)=> ymax=-\(\frac{\Delta}{4a}=-\frac{4}{4}=-1\); xmax=2
=> Đỉnh của Parapon là: (2; -1)
Đồ thị cắt trục hoành tại 2 điểm là nghiệm của PT: x2-4x+3=0
<=> x2-4x+4-1=0 <=> (x-2)2-1=0 <=> (x-2-1)(x-2+1)=0 <=> (x-3)(x-1)=0
=> x1=1 => y1=0
Và x2=3 => y2=0
y x -1 -2 -3 O 1 3 2 3
Lấy A(1;9) và B(2;13) thuộc (d)
Gọi A',B' lần lượt là điểm đối xứng của A(1;9) và B(2;13) qua trục hoành Ox
Vì A' là điểm đối xứng của A(1;9) qua trục hoành Ox nên tọa độ của A' là:
\(\left\{{}\begin{matrix}x=x_A=1\\y=-y_A=-9\end{matrix}\right.\)
Vậy: A'(1;-9)
Vì B' là điểm đối xứng của B(2;13) qua trục hoành Ox nên tọa độ của B' là:
\(\left\{{}\begin{matrix}x_{B'}=x_B=2\\y_{B'}=-y_B=-13\end{matrix}\right.\)
=>B'(2;-13)
Ta có: A,B thuộc (d)
A',B' lần lượt là điểm đối xứng của A,B qua trục Ox
(d') là đường thẳng đối xứng của (d) qua trục Ox
=>A',B' thuộc (d')
Đặt (d'): y=ax+b(a\(\ne\)0)
Thay x=1 và y=-9 vào (d'), ta được:
\(1\cdot a+b=-9\)
=>a+b=-9(1)
Thay x=2 và y=-13 vào (d'), ta được:
\(2\cdot a+b=-13\)
=>2a+b=-13(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=-9\\2a+b=-13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=4\\a+b=-9\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=-4\\b=-9-a=-9-\left(-4\right)=-5\end{matrix}\right.\)
Vậy: (d'): y=-4x-5