Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình:3333
a) vì BE là phân giác của QBA=> B1=B2=QBA/2
vì BD là phân giác của ABC=> B3=B4=ABC/2
ta có EBD= B2+B3=QBA/2 +ABC/2= QBA+ABC/2= 180 độ/2=90 độ ( QBA kề bù với ABC)
trong tứ giác AEBD có EBD= 90 độ=> AEBD là HCN=> EBD=BDA=DAE=AEB= 90 độ
=> BEQ= 90 độ ( kề bù với AEB), BDP= 90 độ( kề bù với BDA)
=> BE vuông góc với AQ, BD vuông góc với AP
b)vì AEBD là hcn => AE=BD,
xét tam giác BEQ và tam giác BEA có
B1=B2(gt)
BE chung
BEQ=BEA(=90 độ)
=> tam giác BEQ= tam gáic BEA(gcg)
=> AE=EQ ( hai cạnh tương ứng)
ta có DBP+EBQ= 90 độ( EBD= 90 độ)
VÌ EBQ vuông tại E=> EQB+EBQ= 90 độ
=> DBP=EQB (=90 độ-EBQ)
xét tam giác BEQ và tam giác PDB có
EQ=BD(=AE)
BEQ=PDB(=90 độ)
DBP=EQB(cmt)
=> tam giác BEQ= tam gáic PDB(gcg)
=> QB=PB ( hai cạnh tương ứng)
=> B là trung điểm của PQ
c) xét tam giác AED và tam giác DBA có
AE=BD(cmt)
DAE=BDA(=90 độ)
AD chung
=> tam giác AED= tam giác DBA (cgc)
=> AB=DE( hai cạnh tương ứng)
a. Xét tam giác BAE và tam giác BHE có:
BA=BH
BE chung
góc ABE=HBE ( phân giác BE )
=> tam giác BAE = tam giác BHE (c.g.c)
=> góc BAE=BHE ( 2 góc tương ứng)
mà góc BAE= 90 độ
=> góc BHE=90 độ => EH ⊥BC .
b.tam giác BAE = tam giác BHE => BA=BH và AE=EH
=> BE là đường trung trực của AH
c.Xét tam giác AKE và tam giác HCE có:
góc AEK=HEC ( đối đỉnh)
AE=EH
góc EAK=EHC (= 90 độ)
=> tam giác AKE = tam giác HCE (g.c.g)
=> EK=EC
d.Có: BA=BH => tam giác BAH cân tại B
=> góc BHA= 180 độ - góc HBA / 2 (1)
Có: BC=BH+HC
BK=BA+AK
mà BH=BA
HC=AK ( do tam giác AKE = tam giác HCE )
=> BC=BK => tam giác BCK cân tại B
=> góc BCK=180 độ - góc HBA /2 (2)
Từ (1) (2) => góc BHA=BCK
mà 2 góc ở vị trí đồng vị
=> AH//CK
e. Xét tam giác BMC và tam giác BMK có:
BC=BK
CM=KM ( M là trung điểm của KC )
BM chung
=> tam giác BMC = tam giác BMK (c.c.c)
=> góc MBC=MBK => BM là tia phân giác của góc B
mà BE cũng là phân giác của góc B
=> ba điểm B, E, M thẳng hàng.
Cho góc xOy = 120 độ, vẽ OA là tia phân giác của góc xOy.Kẻ AB vuông góc với Ox,AC vuông góc với Oy sao cho AB = AC.
a,Chứng minh AB = AC.
b,Tính số đo góc CAO
c,Tam giác ABC là tam giác gì ? Vì sao ?
d,Cho AO = 25 cm, AC =20 cm.Tính độ dài cạnh BO
e,Tính số đo góc CBO?
g,Chứng minh AO là đường trung trực của BC?
Các bạn giúp mình với,huhu
a.Vì M là trung điểm BC, AN
\(\rightarrow ABNC\) là hình bình hành
\(\rightarrow CN//AB,CN=AB\rightarrow AN=AD\)
Mà \(\widehat{DAB}=\widehat{EAC}=90^O\rightarrow\widehat{DAE}+\widehat{DAE}=180^O\)
\(\rightarrow\widehat{DAE}=\widehat{ACN}\left(+\widehat{BAC}=180^O\right)\)
\(\rightarrow\Delta DEA=\Delta NCA\left(c-g-c\right)\rightarrow ED=AN\)
Gọi \(AN\cap DE=F\) do \(\widehat{FEA}+\widehat{NAC}=90^O\rightarrow\widehat{FAE}+\widehat{FEA}=90^O\)
\(\rightarrow AN\cap DE\)
b.Ta có :
\(\left\{{}\begin{matrix}AD=AB\\\widehat{DAC}=\widehat{BAE}\left(=90^O+\widehat{BAC}\right)\\AE=AC\end{matrix}\right.\)
\(\rightarrow\Delta ADC=\Delta ABE\left(c-g-c\right)\rightarrow BE=CD\)
Gọi \(CD\cap BE=G,\widehat{ADC}=\widehat{ABE}\rightarrow AGBD\) nội tiếp
\(\rightarrow\widehat{DAB}=\widehat{DGB}=90^O\rightarrow BE\perp CD\)
c.Gọi \(AH\cap DE=I\)
Vì : \(\Delta ADE=\Delta CNA,I,M\) là trung điểm \(DE,AN\rightarrow\Delta IAE=\Delta MAC\)
\(\rightarrow\widehat{IAE}+\widehat{HAC}=\widehat{ACH}+\widehat{HAC}=90^O\rightarrow\widehat{IAH}=180^O\)\(\rightarrow I,A,H\) thẳng hàng
Hay AH đi qua trung điểm của DE
a. Xét \(\Delta\)BDA vuông và \(\Delta\)BEC vuông có :
AB = BC (vì tam giác ABC cân)
góc B chung
=> \(\Delta\)BDA = \(\Delta\)BEC (cạnh huyền - góc nhọn)
=> BD = BE (2 cạnh tương ứng)
b.Vì \(\Delta\)BDA = \(\Delta\)BEC (chứng minh trên)
=> góc BAD = góc BCE (2 góc tương ứng)
ta có : góc BAD + góc DAC = góc BAC
góc BCE + góc ECA = góc BCA
mà góc BAD = góc BCE (cmt)
BAC = BCA (cmt)
=>góc DAC = góc ECA
=> \(\Delta\)AIC cân tại I
=>AI = IC (tính chất)
Xét \(\Delta\)BIA và \(\Delta\)BIC có :
BI chung
AB = BC (cmt)
AI = IC (cmt)
=> \(\Delta\)BIA = \(\Delta\)BIC (cạnh.cạnh.cạnh)
=> góc ABI = góc CBI ( 2 góc tương ứng )
=> BI là tia phân giác của góc ABC
c.gọi giao điểm của AI và ED là M
Xét \(\Delta\)BME và \(\Delta\)BMD có :
BE = BD (cm câu a)
BM chung
góc EBM = góc DBM (cm câu b)
=> \(\Delta\)BME = \(\Delta\)BMD (cạnh.góc.cạnh)
=>góc BME = góc BMD ( 2 góc tương ứng)
mà góc BME + góc BMD = 180o ( 2 góc kề bù)
=> góc BME = 90o
gọi giao điểm của BI và AC là N
Xét \(\Delta\)BNA và \(\Delta\)BNC có
AB = AC (cmt)
góc ABN = góc CBN (cm câu b)
AN chung
=> \(\Delta\)BNA = \(\Delta\)BNC (cạnh.góc.cạnh)
=> góc BNA = góc BNC ( 2 góc tương ứng)
mà góc BNA + góc BNC = 180o ( 2 góc kề bù)
=> góc BNA = 90o
Xét \(\Delta\)BME và \(\Delta\)BNA có
góc EBM + góc BME + góc BEM = góc ABN + góc BNA + góc BAN = 180o
mà góc BME = góc BNA (= 90o)
=>góc BEM = góc BAN
mà 2 góc này lại ở vị trí đồng vị
=> ED//AC
d.Xét \(\Delta\) vuông BKA và \(\Delta\) vuông BKC có :
BK chung
AB = BC (cmt)
=> \(\Delta\)BKA = \(\Delta\)BKC (cạnh huyền - cạnh góc vuông)
=> góc ABK = góc CBK ( 2 góc tương ứng )
=> BK là tia phân giác của góc ABC
mà BI cũng là tia phân giác của góc ABC (cm câu b)
=> BK trùng với BI
hay B,I,K thẳng hàng
sorry vì mình làm hơi dài nha
a: Xét ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
Do đó: ΔABH=ΔACH
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: Xét ΔAEH và ΔADH có
AE=AD
góc EAH=góc DAH
AH chung
Do đo; ΔAEH=ΔADH
=>góc AEH=góc ADH=90 độ
=>HE vuông góc với AB
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B ( d thuộc AC). Kẻ DEvuông gócBC ( E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AF
b) AD < BC
c) Ba điểm E, D, F thẳng hàng