Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Gọi \(A\left(x_0;y_o\right)\) là điểm cố định mà \(\Delta\)đi qua
Ta có phương trinh hoành độ giao điểm \(\left(m-3\right)x_o-\left(m-2\right)y_0+m-1=0\)
\(\Leftrightarrow mx_0-my_0+m-\left(3x_0-2y_0+1\right)=0\Leftrightarrow m\left(x_0-y_0+1\right)-\left(3x_0-2y_0+1\right)=0\)
Vì đẳng thức đúng với mọi m nên \(\hept{\begin{cases}x_0-y_0+1=0\\3x_0-2y_0-1=0\end{cases}\Rightarrow\hept{\begin{cases}x_0=3\\y_0=4\end{cases}\Rightarrow}A\left(3;4\right)}\)
Vậy \(\Delta\)luôn đi qua điểm \(A\left(3;4\right)\)cố định
b. Ta có \(\left(m-2\right)y=\left(m-3\right)x+m-1\)
Để \(\Delta\)song song với Ox thì \(\hept{\begin{cases}m-2\ne0\\m-3=0\end{cases}\Rightarrow m=3}\)
Để \(\Delta\)song song với Oy thì \(\hept{\begin{cases}m-2=0\\m-3\ne0\end{cases}\Rightarrow m=2}\)
Để \(\Delta\)song song với đt \(y=x\)\(\Rightarrow\hept{\begin{cases}m-2=1\\m-3=1\end{cases}\Rightarrow\hept{\begin{cases}m=3\\m=4\end{cases}\left(l\right)}}\)
Vậy không tồn tại m để \(\Delta\)song song với đt \(y=x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: y=-2x+1
=>y+2x-1=0
=>2x+y-1=0
\(d\left(O;\text{Δ}\right)=\dfrac{\left|2\cdot0+1\cdot0-1\right|}{\sqrt{2^2+1^2}}=\dfrac{1}{\sqrt{5}}\)
b: \(d\left(M;\text{Δ}\right)=\dfrac{\left|2\cdot\left(-1\right)+1\cdot\left(-3\right)-1\right|}{\sqrt{2^2+1^2}}=\dfrac{6\sqrt{5}}{5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề thi tuyển sinh THPT Hoàng Văn Thụ, Hòa Bình, 2013-2014
Giải:
PT hoành độ giao điểm là (m+1)m=x2
<=> x2-(m+1)x+m=0
\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-1\right)^2,m\ne1\)
\(\sqrt{\Delta}=m-1\)
\(x_1=\frac{m+1+m-1}{1}=2m\)
\(\Rightarrow y_1=\left(2m\right)^2-\left(m+1\right)2m+m=4m^2-2m^2-2m+m=2m^2-m\)
\(x_2=\frac{m+1-m+1}{1}=2\)
\(\Rightarrow y_2=4-\left(m+1\right)\cdot2+m=4-2m-2+m=2-m\)
=> A(2m;2m2-m)
![](https://rs.olm.vn/images/avt/0.png?1311)
Phương trình hoành độ giao điểm là:
x^2-x+m=0
\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot m=-4m+1\)
Để phương trình có hai nghiệm phân biệt thì -4m+1>0
=>m<1/4
\(\left(x_2-x_1\right)^4+\left(y_2-y_1\right)^4=18\)
=>\(\left(x_2-x_1\right)^4+\left(x_2^2-x_1^2\right)^4=18\)
=>\(\left(x_2-x_1\right)^4\cdot\left[1+\left(x_2+x_1\right)^4\right]=18\)
\(\Leftrightarrow\left(x_2-x_1\right)^4=9\)
\(\Leftrightarrow\left(x_2-x_1\right)^2=3\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=3\)
=>1^2-4m=3
=>4m=1-3=-2
=>m=-1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Vẽ tương đối (d1), (d2)
O y x 6 -4 d1 -1 -3 d2
b) Phương trình hoành độ giao điểm của (d1) và (d2):
\(\frac{3}{2}\)\(x+6\)\(=\) \(-3x-3\)
\(\Leftrightarrow\)\(\frac{9}{2}\)\(x=\)\(-9\)
\(\Leftrightarrow\)\(x=\)\(-2\)
\(\Rightarrow\)\(y=3\)
Vậy giao điểm của (d1) và (d2) là \(\left(-2;3\right)\)
c) Gọi phương trình đường thẳng cần tìm là (d): y = ax + b
(d) // (d1) => (d):\(\frac{3}{2}\) \(x+b\)
A \(\in\)(d2) => A \((\)\(\frac{-4}{3}\)\(;1\)\()\)
Thay tọa độ A vào đường thẳng (d) ta có :
1 = \(\frac{3}{2}\) .\(\frac{-4}{3}\)+ b
\(\Leftrightarrow\)b = 3
Vậy (d): y =\(\frac{3}{2}\) \(x+3\)
:3
Gọi A,B lần lượt là giao của (Δ) với trục Ox,Oy
=>A(-m^2+4/m-1;0); B(0;m^2-4)
=>OA=|m^2-4|/|m-1|, OB=|m^2-4|
Để OA=OB thì |m^2-4|(1/|m-1|-1)=0
=>m=0; m=-2; m=2