Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) không vì \(\left(d\right)\equiv\left(d'\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}m+2=m^2+2m\\1=-1\end{matrix}\right.\) (vô lí)
b) để \(\left(d\right)\backslash\backslash\left(d'\right)\Leftrightarrow m^2+2m=m+2\)
\(\Leftrightarrow m^2+m-2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\) vậy \(m=1;m=-2\)
a) không ! vì để \(\left(d\right)\equiv\left(d'\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m=m+2\\-1=2\end{matrix}\right.\) (vô lí)
b) để \(\left(d\right)\backslash\backslash\left(d'\right)\Leftrightarrow m^2+2m=m+2\Leftrightarrow m^2+m-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\) vậy \(m=1;m=-2\)
để (d) song song zới đường thẳng (d')
=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)
b)phương trình hoành độ giao điểm của (d) zà (P)
\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)
ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)
để d cắt P tại hai điểm phân biệt
=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)
lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)
để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)
từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương
ĐKXĐ: m<>1, m<>0
a: Để hai đường song song thì \(-\dfrac{2m}{m-1}=\sqrt{3}\)
=>\(-2m=\sqrt{3}m-\sqrt{3}\)
\(\Leftrightarrow m\left(-2-\sqrt{3}\right)=-\sqrt{3}\)
hay \(m=-3+2\sqrt{3}\)
tana=căn 3
nên a=60 độ
b:
\(y=-\dfrac{2m}{m-1}x+\dfrac{2}{m-1}\)
=>\(\dfrac{2m}{m-1}x+y-\dfrac{2}{m-1}=0\)
\(h=d\left(O;d\right)=\dfrac{\left|-\dfrac{2m}{m-1}\cdot0+y\cdot0-\dfrac{2}{m-1}\right|}{\sqrt{\left(\dfrac{2m}{m-1}\right)^2+1^2}}\)
\(=\dfrac{2}{\left|m-1\right|}:\sqrt{\dfrac{4m^2+m^2-2m+1}{\left(m-1\right)^2}}\)
\(=\dfrac{2}{\sqrt{5m^2-2m+1}}\)
Để h lớn nhất thì \(\sqrt{5m^2-2m+1}\) nhỏ nhất
\(5m^2-2m+1=5\left(m^2-\dfrac{2}{5}m+\dfrac{1}{5}\right)\)
\(=5\left(m^2-2\cdot m\cdot\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{4}{25}\right)\)
\(=5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}>=\dfrac{4}{5}\)
=>\(\sqrt{5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}}>=\dfrac{2}{\sqrt{5}}\)
Dấu = xảy ra khi m=1/5
ĐKXĐ: m<>1, m<>0
a: Để hai đường song song thì \(-\dfrac{2m}{m-1}=\sqrt{3}\)
=>\(-2m=\sqrt{3}m-\sqrt{3}\)
\(\Leftrightarrow m\left(-2-\sqrt{3}\right)=-\sqrt{3}\)
hay \(m=-3+2\sqrt{3}\)
tana=căn 3
nên a=60 độ
b:
\(y=-\dfrac{2m}{m-1}x+\dfrac{2}{m-1}\)
=>\(\dfrac{2m}{m-1}x+y-\dfrac{2}{m-1}=0\)
\(h=d\left(O;d\right)=\dfrac{\left|-\dfrac{2m}{m-1}\cdot0+y\cdot0-\dfrac{2}{m-1}\right|}{\sqrt{\left(\dfrac{2m}{m-1}\right)^2+1^2}}\)
\(=\dfrac{2}{\left|m-1\right|}:\sqrt{\dfrac{4m^2+m^2-2m+1}{\left(m-1\right)^2}}\)
\(=\dfrac{2}{\sqrt{5m^2-2m+1}}\)
Để h lớn nhất thì \(\sqrt{5m^2-2m+1}\) nhỏ nhất
\(5m^2-2m+1=5\left(m^2-\dfrac{2}{5}m+\dfrac{1}{5}\right)\)
\(=5\left(m^2-2\cdot m\cdot\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{4}{25}\right)\)
\(=5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}>=\dfrac{4}{5}\)
=>\(\sqrt{5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}}>=\dfrac{2}{\sqrt{5}}\)
Dấu = xảy ra khi m=1/5
a) (d) cắt (d') khi và chỉ khi 2m+1 \(\ne\) m-1 suy ra m \(\ne\) -2 .Vậy m \(\ne\) -2 thì (d) cắt (d').
b) (d) song song với (d') khi và chỉ khi 2m+1=m-1 và -(2m+3) \(\ne\) m suy ra m=-2 và m \(\ne\) -1.Vậy m=-2 thì (d) song song với (d').
a) Để (d) và (d') trungf nhau
\(\Leftrightarrow\left\{{}\begin{matrix}m^2+2m=m+2\\-1=2\left(KTM\right)\end{matrix}\right.\)
Vậy (d) # (d')
b) Để (d)(d') ?