Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi pt đường thẳng (d) là \(y=kx+b\)
Vì $(d)$ đi qua điểm (1,2) nên \(2=k+b\Rightarrow b=2-k\)
Phương trình đường thẳng (d) được viết lại là: \(y=kx+2-k\)
a) PT hoành độ giao điểm giữa (d) và (P) là:
\(x^2-(kx+2-k)=0(*)\)
\(\Leftrightarrow x^2-kx+(k-2)=0\)
Ta thấy \(\Delta=k^2-4(k-2)=(k-2)^2+4\geq 4>0\) với mọi $k\neq 0$
Suy ra $(*)$ luôn có hai nghiệm phân biệt.
Do đó đường thằng $(d)$ luôn cắt $(P)$ tại hai điểm phân biệt.
b)
Nếu $x_A,x_B$ là hai hoành độ giao điểm thì nó chính là nghiệm của $(*)$
Áp dụng định lý Viete ta có: \(\left\{\begin{matrix} x_A+x_B=k\\ x_Ax_B=k-2\end{matrix}\right.\)
\(\Rightarrow x_A+x_B-x_Ax_B-2=k-(k-2)-2=0\)
Ta có đpcm.
Gọi ptđt (d) có dạng: y= kx+b
Vì M(1;12)\(\in\) (d)
Thay xM= 1; yM= 12 vào (d)
\(k+b=12\Rightarrow b=12-k\)
Xét PTHĐGĐ của (d) và (P)
\(\frac{x^2}{3}=kx+b\Leftrightarrow x^2-3kx-3b=0\)
\(\Delta=9k^2+12b=9k^2-12k+144>0\forall x\)
\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=3k\\x_1x_2=-3b=-3\left(12-k\right)=3k-36\end{matrix}\right.\)
Có \(\frac{y_2}{x_1}+\frac{y_1}{x_2}=\frac{\left(kx_2+b\right)x_2+\left(kx_1+b\right)x_1}{x_1x_2}=\frac{k\left(x_1+x_2\right)^2-2kx_1x_2+b\left(x_1+x_2\right)}{x_1x_2}\)
Đến đây gần xong rùi, bạn thay hệ thức Vi-ét vào rùi giải là OK
Bài này giải như số ý, kết luận khác chút.
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=\left(k-1\right)x+4\)
\(\Leftrightarrow x^2-\left(k-1\right)x-4=0\)
( a = 1; b = - (k-1); c = -4 )
\(\Delta=b^2-4ac\)
\(=\left[-\left(k-1\right)\right]^2-4.1.\left(-4\right)\)
\(=\left(k-1\right)^2+16>0\forall k\)
Vậy: (P) và (d) luôn cắt nhau tại 2 điểm phân biệt
Theo Vi-et ta có: \(\hept{\begin{cases}S=y_1+y_2=-\frac{b}{a}=k-1\\P=y_1y_2=\frac{c}{a}=-4\end{cases}}\)
Ta có: \(y_1+y_2=y_1y_2\)
\(\Leftrightarrow S=P\)
\(\Leftrightarrow k-1=-4\)
\(\Leftrightarrow k=-3\left(TMĐK\right)\)
Vậy: k = -3 là giá trị cần tìm
Phương trình hoành độ giao điểmlà:
\(-\dfrac{1}{2}x^2-kx+2=0\)
a=-1/2; b=-k; c=2
Vì ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt
Đường thẳng d có phương trình y = − k x + b ( k ≠ 0 ) có –k là hệ số góc
Đáp án cần chọn là: A