Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)
=>(d') có VTPT là (-1;1)
Phương trình (d') là;
-1(x-3)+1(y-1)=0
=>-x+3+y-1=0
=>-x+y+2=0
2: (d) có VTCP là (-1;1)
=>VTPT là (1;1)
Phương trình (d) là:
1(x+2)+1(y-1)=0
=>x+y+1=0
Tọa độ H là;
x+y+1=0 và -x+y+2=0
=>x=1/2 và y=-3/2
\(M\in d\Rightarrow M\left(3-2t;1+3t\right)\)
\(\Rightarrow\)\(\overrightarrow{AM}=\left(-1-2t;1+3t\right)\)
\(\Rightarrow AM=\sqrt{\left(-1-2t\right)^2+\left(1+3t\right)^2}=5\)
\(\Leftrightarrow13t^2+10t-23=0\Rightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{-23}{13}\end{matrix}\right.\)
\(+t=1\Rightarrow M\left(1;4\right)\)
\(+t=\dfrac{-23}{13}\Rightarrow M=\left(\dfrac{85}{13};\dfrac{-56}{13}\right)\)
vậy có 2 điểm M cần tìm.
\(x^2+y^2-2x-4y-11=0\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2-16=0\)
Thay tọa độ dạng tham số của d vào pt (C) ta được:
\(\left(1+2t-1\right)^2+\left(-2+t-2\right)^2-16=0\)
\(\Leftrightarrow4t^2+\left(t-4\right)^2-16=0\Leftrightarrow5t^2-8t=0\)
\(\Leftrightarrow t\left(5t-8\right)=0\Rightarrow\left[{}\begin{matrix}t=0\\t=\frac{8}{5}\end{matrix}\right.\) \(\Rightarrow d\) cắt (C) tại 2 điểm A; B
Thay t vào pt đường thẳng d ta được tọa độ 2 giao điểm
\(A\left(1;-2\right)\) và \(B\left(\frac{21}{5};\frac{-2}{5}\right)\)
Pt của d1 dạng tổng quát:
\(2\left(x-1\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-5=0\)
Pt d2 dạng tổng quát:
\(1\left(x-1\right)-2\left(y-1\right)=0\Leftrightarrow x-2y+1=0\)
Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}2x-y-5=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{11}{3};\frac{7}{3}\right)\)
b/ d' vuông góc d1 nên nhận \(\left(1;2\right)\) là 1 vtpt và \(\left(2;-1\right)\) là 1 vtcp
Phương trình tổng quát:
\(1\left(x-\frac{11}{3}\right)+2\left(y-\frac{7}{3}\right)=0\Leftrightarrow3x+6y-25=0\)
Pt tham số: \(\left\{{}\begin{matrix}x=\frac{11}{3}+2t\\y=\frac{7}{3}-t\end{matrix}\right.\)
Đề câu sau thiếu
a. Md1= (2;1)
Md2 = (-1;3)
b. Gọi d là đường thẳng đi qua M
- Viết PTTS của d ⊥ d1:
Ta có:
M(2;1)
Do d1⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)
--> VTCP ud = (3;1)
Vậy PTTS của d:
\(\left\{{}\begin{matrix}x=2+3t\\y=1+t\end{matrix}\right.\)
- Viết PTTQ của d ⊥ d1:
Ta có:
M(2;1)
Do d1 ⊥ d nên VTCP ud1 = (-3;-1) --> VTPT nd = (-1;3)
Vậy PTTQ của d:
-1(x - 2) + 3(y - 1) = 0
<=> -x + 2 + 3y - 3 = 0
<=> -x + 3y - 1 = 0
- Viết PTTS của d ⊥ d2:
Ta có:
M(-1;3)
Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)
--> VTCP ud = (2;1)
Vậy PTTS của d:
\(\left\{{}\begin{matrix}x=-1+2t\\y=3+t\end{matrix}\right.\)
Viết PTTQ của d ⊥ d2:
M(-1;3)
Do d ⊥ d2 nên VTCP ud2 = (-2;-1) --> VTPT ud = (-1;2)
Vậy PTTQ của d:
-1(x + 1) + 2(y - 3) = 0
<=> -x - 1 + 2y - 6 = 0
<=> -x + 2y - 7 = 0
Ta có : \(MA=5\leftrightarrow x^2+\left(y-1\right)^2=5^2\)
Thay tọa độ điểm x,y vào tham số t vào pt trên ta được :
\(\left(2+2t\right)^2+\left(3+t-1\right)^2=25\)
\(\Leftrightarrow4t^2+8t+4+4+4t+t^2=25\)
\(\Leftrightarrow5t^2+12t-17=0\rightarrow t_1=1;t_2=-\dfrac{17}{5}\)
Với \(t_1=1\), ta được điểm \(x=4;y=4\Rightarrow M_1\left(4;4\right)\)
Với \(t_2=-\dfrac{17}{5}\)ta được điểm \(x=-\dfrac{24}{5};y=-\dfrac{2}{5}\Rightarrow M_2\left(-\dfrac{24}{5};-\dfrac{2}{5}\right)\)
\(M\in d\Rightarrow M\left(1-2t;t\right)\)
\(\overrightarrow{AM}=\left(1-2t;t-1\right)\)
Ta có: \(AM=\sqrt{10}\Leftrightarrow AM^2=10\\ \Leftrightarrow\left(1-2t\right)^2+\left(t-1\right)^2=10\Leftrightarrow5t^2-6t-8=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=\frac{-4}{5}\end{matrix}\right. \)
\(t=2\Rightarrow M\left(-3;2\right)\\ t=\frac{-4}{5}\Rightarrow M\left(\frac{13}{5};\frac{-4}{5}\right)\)