\(\left\{{}\begin{matrix}x=1-4t\\y=2+3t\end{matrix}\right.t\in R\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2020

a/ \(\overrightarrow{u}=\left(-4;3\right)\Rightarrow\overrightarrow{n}=\left(3;4\right)\)

\(\Rightarrow\left(d\right):3\left(x-1\right)+4\left(y-2\right)=0\)

\(\left(d\right):3x+4y-11=0\)

b/ \(\left(x_O-x_M;y_O-y_M\right)=\left(4;-5\right)\)

Ủa đề bài kiểu gì vậy? Thế này là tìm được M rồi mà, cho M thuộc (d) làm gì? :<

2 tháng 8 2021

a

9 tháng 4 2017

a)\(\Rightarrow d:4x+5y+14=0\)

\(d':4x+5y+14=0\)

Ta có: \(\dfrac{4}{4}=\dfrac{5}{5}=\dfrac{14}{14}\) \(\Rightarrow d\equiv d'\)

b) \(\Rightarrow d:x+2y-5=0\)

Ta có: \(\dfrac{1}{2}=\dfrac{2}{4}=\dfrac{-5}{-10}\) \(\Rightarrow d\equiv d'\)

c) Ta có: \(\dfrac{1}{2}\ne\dfrac{1}{1}\) \(\Rightarrow d\) cắt \(d'\)

NV
23 tháng 6 2020

Tọa độ M thỏa mãn: \(\left\{{}\begin{matrix}x=-16+4t\\y=-6+3t=0\end{matrix}\right.\) \(\Rightarrow M\left(-8;0\right)\)

Tọa độ N thỏa mãn: \(\left\{{}\begin{matrix}x=-16+4t=0\\y=-6+3t\end{matrix}\right.\) \(\Rightarrow N\left(0;6\right)\)

Gọi I là trung điểm MN \(\Rightarrow I\left(-4;3\right)\)

\(\overrightarrow{MN}=\left(8;6\right)\Rightarrow MN=10\Rightarrow R=\frac{MN}{2}=5\)

Phương trình đường tròn:

\(\left(x+4\right)^2+\left(y-3\right)^2=25\)

9 tháng 5 2020

Hiện tại là characters và symbols của mình ko bấm được bạn ạ, máy tính mình hư mang đi sửa rồi, gợi ý thôi nhé :))

Câu a đơn giản thôi, bạn viết véctơ AB ra, nghĩa là lúc này, đường thẳng đi qua 2 điểm AB có véctơ chủ phương là AB, bạn viết véctơ pháp tuyến ra là được, rồi chọn 1 trong 2 điểm A,B làm x0,y0 là ok rồi :))

Còn câu b, trước hết là bạn phải viết ptđt của delta đã, trong sgk có instructions đó :)

Rồi sau đó, như mình đã nói với bạn hồi chiều, 2 đt song song thì có chung véctơ pháp tuyến, giờ bài toán chỉ cong là: viết ptđt đi qua điểm A và có véctơ pháp tuyến là...

Đơn giản thôi hà :D

20 tháng 6 2020

\(B\in d\)=> B ( 7-2m; -3 +m) 

\(B'\in d'\)=> B' ( -5 + 4t ; -7 + 3t ) 

Mà A; B;B' \(\in\)\(\Delta\) và AB = AB' 

=> \(\overrightarrow{AB}=\overrightarrow{B'A}\)

=> \(\hept{\begin{cases}7-2m-2=2+5-4t\\-3+m+3=-3+7-3t\end{cases}}\)<=>  m = 1; t = 1 

=> B(5 ; -2); C( -1; - 4) 

=> Viết phương trình d :....