Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\overrightarrow{u}=\left(-4;3\right)\Rightarrow\overrightarrow{n}=\left(3;4\right)\)
\(\Rightarrow\left(d\right):3\left(x-1\right)+4\left(y-2\right)=0\)
\(\left(d\right):3x+4y-11=0\)
b/ \(\left(x_O-x_M;y_O-y_M\right)=\left(4;-5\right)\)
Ủa đề bài kiểu gì vậy? Thế này là tìm được M rồi mà, cho M thuộc (d) làm gì? :<
Gọi \(I\left(\frac{3}{2};-1\right)\) là trung điểm AB
\(\overrightarrow{AB}=\left(1;-4\right)\Rightarrow\) trung trực đường thẳng AB nhận \(\left(1;-4\right)\) là 1 vtpt
Phương trình trung trực d' của AB:
\(1\left(x-\frac{3}{2}\right)-4\left(y+1\right)=0\Leftrightarrow2x-8y-11=0\)
M là giao điểm của d và d'
\(\Rightarrow\) Tọa độ M là nghiệm:
\(2\left(1+2t\right)-8\left(-3-5t\right)-11=0\) \(\Rightarrow t=-\frac{15}{44}\)
\(\Rightarrow M\left(\frac{7}{22};-\frac{57}{44}\right)\)
a)\(\Rightarrow d:4x+5y+14=0\)
\(d':4x+5y+14=0\)
Ta có: \(\dfrac{4}{4}=\dfrac{5}{5}=\dfrac{14}{14}\) \(\Rightarrow d\equiv d'\)
b) \(\Rightarrow d:x+2y-5=0\)
Ta có: \(\dfrac{1}{2}=\dfrac{2}{4}=\dfrac{-5}{-10}\) \(\Rightarrow d\equiv d'\)
c) Ta có: \(\dfrac{1}{2}\ne\dfrac{1}{1}\) \(\Rightarrow d\) cắt \(d'\)
Ta có : \(MA=5\leftrightarrow x^2+\left(y-1\right)^2=5^2\)
Thay tọa độ điểm x,y vào tham số t vào pt trên ta được :
\(\left(2+2t\right)^2+\left(3+t-1\right)^2=25\)
\(\Leftrightarrow4t^2+8t+4+4+4t+t^2=25\)
\(\Leftrightarrow5t^2+12t-17=0\rightarrow t_1=1;t_2=-\dfrac{17}{5}\)
Với \(t_1=1\), ta được điểm \(x=4;y=4\Rightarrow M_1\left(4;4\right)\)
Với \(t_2=-\dfrac{17}{5}\)ta được điểm \(x=-\dfrac{24}{5};y=-\dfrac{2}{5}\Rightarrow M_2\left(-\dfrac{24}{5};-\dfrac{2}{5}\right)\)