Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\dfrac{2}{3}x^3y.\dfrac{3}{4}xy^2z^2=\dfrac{1}{2}x^4y^3z^2\)
b, Bậc:9
c, Hệ số: `1/2`
Biến: x4y3z2
d, Thay x=-1, y=-2, z=-3 vào A ta có:
\(A=\dfrac{1}{2}x^4y^3z^2=\dfrac{1}{2}\left(-1\right)^4.\left(-2\right)^3.\left(-3\right)^2=\dfrac{1}{2}.\left(-8\right).9=-36\)
a, \(A=\dfrac{2}{3}x^3y.\dfrac{3}{4}xy^2z^2=\dfrac{x^4y^5z^2}{2}\)
b, bậc 11
c, hệ số 1/2 ; biến x^4y^5z^2
d, Thay x = -1 ; y = -1 ; z = -3 ta được
\(\dfrac{1.1.9}{2}=\dfrac{9}{2}\)
Với mọi x, y khác 0 ta có
\(x^4>0\)
\(y^4>0\)
=> \(x^4.y^4>0\)
=> A > 0 \(\forall x,y\ne0\)
a) Ta có: \(A=2xy^2\cdot\left(\dfrac{1}{2}x^2y^2x\right)\)
\(=x^4y^4\)
b) Bậc của đơn thức là 8
Bài làm
a) Tích của hai đơn thức A và B là:
A . B = -2xy . xy = -2x2y2
b) Hệ số của đơn thức là: -2.
Biến của đơn thức là: x2y2
Bậc của đơn thức là: 4
c) Thay x = 3 vào tích của hai đơn thức A và B ta được:
-2 . 32 . y2
Mà giá trị của đơn thức là -6
<=> -2 . 32 . y2 = -6
<=> -2 . 9 . y2 = -6
<=> -18 . y2 = -6
<=> y2 = \(\frac{-6}{-18}=\frac{1}{3}\)
<=> y = \(\pm\sqrt{\frac{1}{3}}\)
Vậy với x = 3, giá trị của đơn thức là -6 thì y = \(\pm\sqrt{\frac{1}{3}}\)
d) Ta có: -2x2y2
Mà x2 > 0 V x thuộc R
y2 > 0 V y thuộc R
=> x2y2 > 0 V x,y thuộc R
=> x2y2 luôn là số dương.
Mà -2x2y2 < 0 V x,y thuộc R
Vậy đa thức trên luôn nhận giá trị âm với mọi x, y.
# Học tốt #
Cho đơn thức A = -2xy và đơn thức B = xy
a) Tích của hai đơn thức
\(A\cdot B=-2xy\cdot xy=-2\left(xx\right)\left(yy\right)=-2x^2y^2\)
b) Hệ số : -2
Phần biến : x2y2
Bậc của đơn thức tích = 2 + 2 = 4
c) Đơn thức tích có giá trị là -6
=> \(-2x^2y^2=-6\)biết x = 3
Thay x = 3 vào đơn thức tích ta được :
\(-2\cdot3^2\cdot y^2=-6\)
=> \(-2\cdot9\cdot y^2=-6\)
=> \(-18\cdot y^2=-6\)
=> \(y^2=\frac{1}{3}\)
=> \(y=\sqrt{\frac{1}{3}}\)
d) CMR đơn thức tích \(-2x^2y^2\)luôn nhận giá trị không dương với mọi x và y
Ta dễ dàng nhận thấy : x2 và y2 đều có số mũ là chẵn
=> x2y2 luôn nhận giá trị dương với mọi x và y
Phần hệ số -2 mang dấu âm
=> ( - ) . ( + ) = ( - )
=> Đơn thức tích \(-2x^2y^2\)luôn nhận giá trị không dương với mọi x và y ( đpcm )
a: \(A=\dfrac{2}{3}x^3y\cdot\dfrac{3}{4}xy^2\cdot z^2\)
\(=\left(\dfrac{2}{3}\cdot\dfrac{3}{4}\right)\cdot\left(x^3\cdot x\right)\cdot\left(y\cdot y^2\right)\cdot z^2\)
\(=\dfrac{1}{2}x^4y^3z^2\)
b: \(A=\dfrac{1}{2}x^4y^3z^2\)
bậc của đa thức A là 4+3+2=9
c: \(A=\dfrac{1}{2}x^4y^3z^2\)
Hệ số là \(\dfrac{1}{2}\)
Phần biến là \(x^4;y^3;z^2\)
d: Thay x=-1;y=-2;z=-3 vào A, ta được:
\(A=\dfrac{1}{2}\cdot\left(-1\right)^4\cdot\left(-2\right)^3\cdot\left(-3\right)^2\)
\(=\dfrac{1}{2}\left(-8\right)\cdot9=-4\cdot9=-36\)
1 ) a) \(4x^2-x^2+8x^2\)
\(=\left(4+8\right).x^2+x^2-x^2\)
\(=12.x^3\)
b) \(\frac{1}{2}.x^2.y^2-\frac{3}{4}.x^2.y^2+x^2.y^2\)
\(\left(\frac{1}{2}-\frac{3}{4}\right).x^2.x^2.x^2.+y^2+y^2+y^2\)
\(=-\frac{1}{4}.x^6+y^6\)
c) \(3y-7y+4y-6y\)
\(=\left(3-7+4-6\right).y.y.y.y\)
\(=-6.y^4\)
2)
\(\left(-\frac{2}{3}.y^3\right)+3y^2-\frac{1}{2}.y^3-y^2\)
\(\left(-\frac{2}{3}+3-\frac{1}{2}\right).y^3.y^3-y\)
\(=\frac{25}{6}.y^5\)
b) \(5x^3-3x^2+x-x^3-4x^2-x\)
\(=\left(5-3-4\right).\left(x^3.x^2+x-x^3-x^2-x\right)\)
\(=-2.0=0\)
hông chắc
3)a) \(5xy^2.\frac{1}{2}x^2y^2x\)
\(\left(5.\frac{1}{2}\right).x^2.x^2.x.y^2.y^2\)
\(=\frac{5}{2}.x^5.y^4\)
b) Tổng các bậc của đơn thức là
5+4 = 9
Hệ số của đơn thức là \(\frac{5}{2}\)
Phần biến là x;y
Thay x=1;y=-1 vào đơn thức
\(\frac{5}{2}.1^5.\left(-1\right)^4\)
\(\frac{5}{2}.1.\left(-1\right)\)
\(\frac{5}{2}.\left(-1\right)=-\frac{5}{2}\)
Vậy ....
chắc không đúng đâu uwu
a: \(A=-xy^3\cdot2xy=-2x^2y^4\)
Hệ số là -2
Phần biến là \(x^2;y^4\)
b: Bậc là 6
b: Thay x=2 và y=-1 vào A, ta được:
\(A=-2\cdot2^2\cdot\left(-1\right)^4=-8\)
a.A=-2x2y4 hs là: -2 ; phần biến là: x2y4
b.bậc của A là: 6
c.thay x=2,y= -1 vào biểu thức A ta đc:
A=-2. 22 . (-1)4
A=-2 . 4 .1=-8
d.đơn thức A ko thể nhận gtrị dương