Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình đã đăng lại câu hỏi dễ hiểu hơn theo link này rồi ạ: https://olm.vn/hoi-dap/detail/1306671964747.html?auto=1

Answer:
Bài 1:
Vì AB = AC nên tam giác ABC cân tại A
=> Góc ABC = góc ACB = (180 độ - góc BAC) : 2 = 30 độ
Ta gọi DF là trung trực của AC
=> DF vuông góc AC = F; FC = FA
Mà DF là trung trực của AC
=> Góc ADA = 2 góc CDF = 2 . (180 độ - góc DCF - góc CFD) = 120 độ
Xét tam giác ACE và tam giác BAD:
BD = AE
AC = AB
Góc EAC = góc DBA = 30 độ
=> Tam giác ACE = tam giác BAD (c.g.c)
=> Góc CED = góc ADB = góc EDC = 180 độ - góc CDA = 60 độ
Bài 2:
Có: IK là trung trực của BC
=> IB = IC
Tương tự ID = IA mà AB = CD
=> Tam giác IAB = tam giác IDC (c.c.c)
=> Góc IAB = góc IDA = góc IAC
=> AI là tia phân giác của góc BAD
Mà AI là tia phân giác của góc A
IE vuông góc AB; IH vuông góc AC
=> IE = IH
\(\Rightarrow BE^2=IB^2-IE^2=IC^2-IH^2=HC^2\)
=> BE = HC
Mà IE = IH; góc IEA = góc IHA = 90 độ; góc EAI = góc IAH
=> Tam giác AEI = tam giác AHI (g.c.g)
=> AE = AH mà IE = IH
=> IA là trung trực của EH
Có: CF song song AB nên góc FHC = góc AHE = góc AEH = góc HFC
=> Tam giác CHF cân ở C
=> CF = CH
=> CF = BE
Mà KB = KC; góc EBK = góc KCF
=> Tam giác BKE = tam giác CKF (c.g.c)
=> Góc BKE = góc FKC
=> E, F, K thẳng hàng

1
B A H C M D
a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A
b) Xét \(\Delta\)ABH và\(\Delta\)DBH:
BAH=BDH=90
BH chung
AB=DB
=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC
c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM
Suy ra \(\Delta\)AMC cân tại M
2.
C B A H
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:
AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm
Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:
AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm
b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)
Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)

B A C D E F S
a) Tam giác ABD và EBD có:
Góc ABD = EBD (BD là phân giác)
Cạnh BA = BE (gt)
Cạnh BD chung
=> Tam giác ABD = EBD (c-g-c) (*)
b) Từ (*) => góc BED = 90 độ (= góc BAD)
=> tam giác EDC vuông tại E => cạnh huyền DC > cạnh góc vuông DE (1)
mà từ (*) => DE = AD (2)
Từ (1) và (2) => DC > AD
c) Tam giác BFC có hai đường cao CA và FE cắt nhau tại D => D là trực tâm
Đường BD đi qua trực tâm D nên là đường cao thứ ba của tam giác BFC. Đồng thời BD cũng là phân giác của góc FBC
=> tam giác FBC cân tại B => đường cao, phân giác cũng là trung tuyến. Vậy BD đi qua trung điểm S của FC.
Vậy B, D, S thẳng hàng.