Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMC vuông tại M và ΔBMC vuông tại M có
MC chung
MA=MB
Do đó: ΔAMC=ΔBMC
b: Ta có: ΔAMC=ΔBMC
=>CA=CB
Ta có: ΔAMC=ΔBMC
=>\(\widehat{CAM}=\widehat{CBM}\)
a) Xét ∆AMB và ∆AMC có :
BM = MC ( M là trung điểm BC )
AM chung
AB = AC
=> ∆AMB = ∆AMC (c.c.c)
b) Vì AB = AC
=> ∆ABC cân tại A
Mà AM là trung tuyến
=> AM \(\perp\)BC
Mà a\(\perp\)AM
=> a//BC ( từ vuông góc tới song song )
c) Vì CN//AM (gt)
AN//MC ( a//BC , M thuộc BC)
=> ANCM là hình bình hành
=> NC = AM , AN = MC
Mà AMC = 90°
=> ANCM là hình chữ nhật
=> NAM = AMC = MCN = CNA = 90°
Xét ∆ vuông NAC và ∆ vuông MCA có :
AN = MC
AM = CN
=> ∆NAC = ∆MCA (ch-cgv)
d) Vì ANCM là hình chữ nhật (cmt)
=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)
a, xét tam giác ABC và tam giác DBE có : góc B chung
AB = BD (Gt)
góc BAC = góc BDE = 90
=> tam giác ABC = tam giác DBE (cgv-gnk)
b, xét tam giác ABH và tam giác DBH có : BH chung
AB = BD (Gt)
góc HAB = góc HDB = 90
=> tam giác ABH = tam giác DBH (ch-cgv)
=> góc ABH = góc DBH (đn) mà BH nằm giữa AB và BD
=> BH là pg của góc ABC (đn)
c, AB = BD (gt) có BD = 6 (gt)
=> AB = 6
BD + DC = BC
BD = 6; CD = 4
=> BC =10
tam giác ABC vuông tại A (Gt)
=> BC^2 = AB^2 + AC^2
=> AC^2 = 10^2 - 6^2
=> AC^2 = 64
=> AC = 8 do AC > 0
https://lazi.vn/edu/exercise/cho-tam-giac-abc-co-goc-a-120-do-duong-phan-giac-ad-d-thuoc-bc-ve-de-vuong-goc-voi-ab-df-vuong-goc
a) ΔAED=ΔAFDΔAED=ΔAFD(ch-gn)nên DE=DF.(hai cạnh tương ứng)
Mặt khác dễ dàng chứng minh được EDFˆ=60o
Vì vậy tam giác DEF là tam giác đều
b)ΔEDK=ΔFDT(hai cạnh góc vuông)
nen DK=DI(hai cạnh tương ứng).Do đó Tam giác DIK cân ở D
c) AD là tia phân giác của góc BAC nên DAB^=DAC^=1/2BAC^=60o
AD//MC(gt),do đó AMCˆ=DABˆ=60o(hai góc nằm trong vị trí đồng vị)
AMC^=CAD^=60o(hai góc nằm trong vị trí sole trong)
Tam giác AMC có hai góc bằng nhau và khoảng 60o nên là tam giác đều
d)Ta có AF=AC-FC=CM-FC=m-n.