Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho đoạn thẳng AB và trung điểm M của nó
a.Chứng tỏ rằng nếu C là điểm nằm giữa M và B thì CM=$\frac{CA-CB}{2}$CA−CB2
b.Chứng tỏ nếu C là điểm thuộc tia đối của tia BA thì CM=$\frac{CA+BC}{2}$
M là trung điểm AB => MA = MB => AB=2MB
Có: \(CM=CB+MB=\frac{2CB+2MB}{2}=\frac{2CB+AB}{2}=\frac{CB+\left(AB+CB\right)}{2}=\frac{CB+CA}{2}\)
Trần Văn Thành:
A•------------•M------•C------•B
Giải:
Điểm M là trung điểm AB=> MA+MB=AB
Hay M nằm giữa 2 điểm A và B
C € MB => C nằm giữa M và B, M nằm giữa A và C
=> MC + CB = MB
Điểm M là trung điểm của AB => M nằm giữa 2 điểm A và B và MA = MB
Điểm C nằm giữa M và B=>MC+CB=MB
=> CB=MB-MC
Điểm C€MB =>điểm M nằm giữa A và C
=> AM + MC = AC
Ta có: AC = AM + MC (1)
CB = MB - MC (2)
Lấy (1) và (2) theo vế, ta có:
AC -CB = AM + MC - (MB - MC)
= AM + MC - MB + MC
= AM - MB + 2MC
=> AC - CB = 2MC => \(CM=\frac{AC-CB}{2}\)
:3