K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

bài này rất dễ, t k bit bn học tới đâu r, nếu học tới tam giác đồng dạng thi cm dễ nhât, nếu chưa học tới thì dựa vào đường trung bình của tg, hình thang, là xong

25 tháng 8 2017

uk

nhưng pk đăng bài tus này nhé,.... ok . cảm ơn hey

25 tháng 8 2019

A B C D M O N E

Xét \(\Delta OEB\)và \(\Delta OMC\)có : 

\(OB=OC\left(gt\right)\)

\(\widehat{EBO}=\widehat{MCO}\)

\(EB=MC\left(gt\right)\)

\(\Rightarrow\Delta OEB=\Delta OMC\left(c.g.c\right)\)

\(\Rightarrow OE=OM\)( hai cạnh tương ứng ) \(\left(1\right)\)

Cũng có :  \(\widehat{EOB}=\widehat{MOC}\)( hai góc tương ứng ) 

\(\Rightarrow\widehat{EOB}+\widehat{BOM}=\widehat{BOM}+\widehat{MOC}\)

\(\Rightarrow\widehat{EOM}=\widehat{BOC}=90^o\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\Delta OEM\)vuông cân ( đpcm ) 

\(b,\)Ta có : \(AB//CN\Rightarrow\Delta ABM~\Delta NCM\)

\(\Rightarrow\frac{CM}{BM}=\frac{MN}{AM}\Rightarrow\frac{CM}{BM+MN}=\frac{MN}{AM+MN}\)

\(\Rightarrow\frac{CM}{BC}=\frac{MN}{AN}\Rightarrow\frac{BE}{AB}=\frac{MN}{AN}\)

\(\Rightarrow ME//BN\)

Cho chị nợ câu c :) lâu không học toán 8 quên sạch ròi :((

25 tháng 8 2019

Gọi K là giao điểm của OM và BN

Do \(ME//BN\)(CMb)

=> Góc BKM= góc  EMO=45 độ 

Xét tam giác OBM và tam giác OKB có

\(BKM=OBM=45^0\)

Góc O chung

=> tam giác OBM đồng dạng tam giác OKB

=> \(OB^2=OM.OK\)

MÀ \(OB=OC\)

=> \(OC^2=OM.OK\)

=> tam giác OMC đồng dạng tam giác OCK

=> \(MKC=OCM=45^o\)

=> BKC=90 độ

=> \(K\equiv H\)

=> O,M,H thẳng hàng

Vậy O,M,H thẳng hàng


 

7 tháng 7 2017

A B C D E S T

2 tháng 10 2018

A B C M K I E D H

MK nêu cách giải thôi nha! Lười quá!!!

a, CM tứ giác MEAD là hình bình hành.( bạn tự cm)

Vì tứ giác MEAD là hình bình hành nên 2 đường chéo DE và AM cắt nhau tại trung điểm mỗi đường.

Mà điểm \(I\) là trung điểm của AM Suy ra \(I\) cũng là TĐ của DE

\(\Rightarrow I\in DE\) Suy ra \(I,D,E\) thẳng hàng

b, Kẻ \(IK\bot BC\) và \(AH\bot BC\) \((K,H \in BC)\)

Ta có

Vì  \(IA=IM\) và \(IK//AH\)

\(\Rightarrow MK=KH\) \(\Rightarrow \) \(IK\) là đường trung bình của \(\Delta AMH\)

\(\Rightarrow IK=\dfrac{AH}{2}\) (1)

Lại có: Áp dụng định lí Py-ta-go cho \(\Delta AHC\)

\(\Rightarrow AH^2=AC^2-HC^2\)

             \(=AC^2-{\left(\dfrac{BC}{2}\right)}^2\) \(=AC^2-{\left(\dfrac{AC}{2}\right)}^2\) ( Do \(\Delta ABC\) đều)

             \(=AC^2-\dfrac{AC^2}{4}=\dfrac{3AC^2}{4}\)

\(\Rightarrow AH=\dfrac{\sqrt3 AC}{4}\) (2) 

Từ (1)(2) suy ra \(IK=\dfrac{\sqrt3}{8}AC\)

Vì AC không đổi nên \(IK\) ko đổi.

Khoảng cách từ \(I\) đến BC ko đổi suy ra khi M di chuyển trên BC thì \(I\) di chuyển trên đường thẳng song song với BC

và cách BC một khoảng =\(\dfrac{\sqrt3}{8}AC=\dfrac{\sqrt3}{8}BC\)

21 tháng 4 2017

a) VÌ DE//BC 

SUY RA \(\frac{DN}{BM}=\frac{AN}{AM}\)VÀ \(\frac{NE}{MC}=\frac{AN}{AM}\)\(\Rightarrow\frac{DN}{BM}=\frac{NE}{MC}\)mà BM=MC(m là trung diểm) nên DN=NE

b) dễ thấy \(\frac{KN}{KC}=\frac{DN}{BC}\)\(\frac{SN}{SB}=\frac{NE}{BC}\)mà \(\frac{DN}{BC}=\frac{NE}{BC}\)(NE=DN)

\(\Rightarrow\frac{KN}{KC}=\frac{SN}{SB}\)áp dụng định lí talet ta suy ra KS//BC