Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Bài 1:
Để công suát tiêu thụ trê mạch cực đại thì:
\((R+r)^2=(R_1+r)(R_1+r)\)
\(\Rightarrow (R+10)^2=(15+10)(39+10)\)
\(\Rightarrow R=25\Omega\)
Bài 2: Có hình vẽ không bạn? Vôn kế đo hiệu điện thế của gì vậy?
OK, ZL mình vừa tính lúc nãy.
Giờ tìm \(\varphi\)
Ta có: \(\tan\varphi=\frac{Z_L-Z_C}{R}=\frac{\frac{4}{\sqrt{3}}R-\sqrt{3}R}{R}=\frac{1}{\sqrt{3}}\)
\(\Rightarrow\varphi=\frac{\pi}{6}\)
Vậy u sớm pha hơn i là \(\frac{\pi}{6}\)
Hay điện áp 2 đầu điện trở lệch pha \(\frac{\pi}{6}\)so với điện áp 2 đầu đoạn mạch.
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Mình giải thích rõ hơn công thức của bạn Nguyễn Trung Thành
iOUUUUULRCRC→→→→→→abc
Nhận xét:
+ Khi L thay đổi thì góc b và c không đổi (do R và ZC không đổi).
+ Khi L = L0 để UL max thì a0 + b = 900.
Áp dụng định lí hàm số sin trong tam giác OULUC:
\( \frac{U_L}{\sin(a+b)}=\frac{U}{\sin c}=const\)
\(\Rightarrow\frac{U_L}{\sin(a_1+b)}=\frac{U_L}{\sin(a_2+b)}\Rightarrow \sin(a_1+b)=\sin(a_2+b)\Rightarrow a_1+b=\pi-(a_2+b)\)
\(\Rightarrow a_1+a_2=\pi-2b\) Mà \(a_0+b=\frac{\pi}{2}\Rightarrow 2a_0=\pi-2b\)
\(\Rightarrow a_1+a_2=2a_0\)
Hay: \(\varphi_0=\frac{\varphi_1+\varphi_2}{2}\)
Áp dụng công thức: \(\varphi_0=\frac{\varphi_1+\varphi_2 }{2}\Rightarrow\varphi_0=\frac{0,56+0,98 }{2}=0,77\)
\(\Rightarrow \cos\varphi_0=\cos0,77=0,72\)
Đáp án B.
Đáp án A
+ Khi U c m a x ⇒ ω = ω c = 1 L C - R 2 2 L 2 = 100 π
+ Khi U L m a x ⇒ ω = ω L = 2 2 L C - R 2 C 2 = 200 π
+ ω L = 2 ω C ⇒ R 2 = L C ⇒ R = L C
+ U L m a x = 2 U L R 4 L C - R 2 C 2 = 2 U L L C 4 L C - L C C 2 = 2 U 3
Khi U L cực đại thì điện áp tức thời giữa hai đầu đoạn mạch sẽ vuông pha với điện áp tức thời giữa hai đầu đoạn mạch chứa RC
→ U = U L m a x − U C U L m a x = 80 V.
Đáp án A
Đáp án A
Phương pháp: Vận dụng lí thuyết L biến thiên
Cách giải:
- L biến thiên để URmax, UCmax <=> cộng hưởng điện.
Khi đó: U R m a x = U U C m a x = U R Z C
- L biến thiên để ULmax . Khi đó: U L m a x = U R 2 + Z 2 C R
Theo đề bài, ta có:
U L m a x = 5 U R m a x = 5 U → R 2 + Z 2 C = 5 R → Z 2 C = 4 R 2 → Z C = 2 R
Tỉ số: U C m a x U L m a x = U R Z C 5 U = Z C 5 R = 2 5