Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a bạn giải rồi nên mình không giải lại nha ~
b) Xét tứ giác MPEN, có:
ME và NP là 2 đường chéo cắt nhau tại H
mà H là trung điểm ME và NP
=> tứ giác MPEN là hình bình hành
Xét tam giác MAH và tam giác EBH, có:
MA = BE (gt)
góc AMH = góc HEB (so le trong của MP // NE)
HM = HE (gt)
=> tam giác MAH = tam giác EBH (c-g-c)
=> góc MHA = góc EHB
mà góc MHA + góc AHE = 180 độ (vì M, H, E thẳng hàng)
=> góc EHB + góc AHE = 180 độ
=> góc AHB = 180 độ
=> 3 điểm A,H,B thẳng hàng (đpcm)
c) Xét tam giác NHE, có:
góc HNE + góc NHE + góc HEN = 180 độ ( tổng 3 góc trong tam giác)
=> 50 độ + góc NHE + 25 độ = 180 độ
=> góc NHE = 105 độ (đpcm)
Ta có: góc NHE + góc PHE = 180 độ (kề bù)
=> 105 độ + góc PHE = 180 độ
=> góc PHE = 75 độ
Xét tam giác HKE, có:
góc EHK + góc HKE + góc HEK = 180 độ (tổng 3 góc trong tam giác)
=> 75 độ + 90 độ + góc HEK = 180 độ
=> góc HEK = 15 độ (đpcm)
p/s: có chỗ nào không hiểu inb hỏi nà ~
a) Xét ΔABD và ΔACE có:
∠ADB = ∠AEC = 900 (gt)
BA = AC (gt)
∠BAC (chung)
⇒ ΔABD =ΔACE (cạnh huyền – góc nhọn)
b) Có ΔABD =ΔACE ⇒ ∠ABD = ∠ACE (hai góc tương ứng)
mặt khác: ∠ABC = ∠ACB (D ABC cân tại A )
⇒ ABC – ABD =ACB – ACE ⇒ HBC = HCB
⇒ ΔBHC là tam giác cân tại H
c) Có ΔHDC vuông tại D nên HD < HC
mà HB = HC (ΔBHC cân tại H)
⇒ HD < HB
d) Gọi I là giao điểm của BN và CM
* Xét ΔBNH và ΔCMH có:
BH = CH (ΔBHC cân tại H)
∠BHN = ∠CHM (đối đỉnh)
NH = HM (gt)
ΔBNH = ΔCMH (c.g.c) ⇒ ∠HBN = ∠HCM
* Lại có: ∠HBC = ∠HCB (Chứng minh câu b)
⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM ⇒ ∠IBC = ∠ICB
⇒ IBC cân tại I ⇒ IB = IC (1)
Mặt khác ta có: AB = AC (D ABC cân tại A) (2)
HB = HC (D HBC cân tại H) (3)
* Từ (1); (2) và (3)
Þ 3 điểm I; A; H cùng nằm trên đường trung trực của BC
⇒ I; A; H thẳng hàng
⇒ các đường thẳng BN; AH; CM đồng quy
Bạn tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath (https://olm.vn/hoi-dap/question/1172749.html)
Trả lời:
1.a) Vì tam giác ABC cân tại A
=>B=ACD
Mà ACD=ECN(đối đỉnh)
=>B=ECN
Vì AB=AC(tam giác ABC cân tại A)
Mà AC=IC
=>AB=IC
Xét tam giác ABD và tam giác ICE có:
AB=IC(c/m trên)
B=ECN(c/m trên)
BD=CE(gt)
=>tam giác ABD=tam giác ICE(c.g.c)
2.
Xét tam giác BMD và tam giác CEN có:
BDM=CNE(=90 độ)
BD=CE(gt)
B=ECN(c/m trên)
=>tam giác BDM=tam giác CEN(g.c.g)
=>BM=CN(2 cạnh tương ứng)
~Học tốt!~
a: Xét ΔMNP có \(MP^2=NP^2+NM^2\)
nên ΔMNP vuông tại N
b: \(PK=\sqrt{6^2+8^2}=10\left(cm\right)\)