Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

giúp nhanh hộ cái các CTV đâu hết rồi làm hộ câu b đi
trước 5 h tôi sắp đi học rồi :(

a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
Xét ΔABH có
M là trung điểm của AB
MI//BH
Do đó: I là trung điểm của AH

a. tam giác ABC có AM=MC và BN=NC => MN là đg TB của ABC => MN//AB => AMNB là hình thang ( k thể là Hình bình hành được )
b. D là điểm đối xứng với B qua M =>BM=MD
Tứ giác ABCD có AM=MC và BM=MD => 2 đg chéo cắt nhau tại trung điểm của mỗi đường
=> ABCD là HBH
c. E đối xứng với A qua N => AN=NE
ABEC có BN=NC và AN=NE => ABEC là HBH ( CMTT như câu b )

a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC hay BMNC là hình thang

mình học lớp 6 bạn ơi
mà bài này ko có hình à
hay mình tự vẽ hình đấy
Hình vẽ mình vô paint phóng to nên hơi mờ, bạn thông cảm!
a) Vì Q là trung điểm của BC và PA’ nên BPCA’ là hình bình hành suy ra BA' // PC và BA' = PC ,(1).
Tương tự ta có : PC // AB' và, PC = AB'(2).
Từ (1) và (2) ta có ABA'B' là hình bình hành.
Gọi I là giao điểm của AA’ với BB’ thế thì A, A’ đối xứng với nhau qua I.
b) Tuơng tự ta có ACA’C’ là hình bình hành nên CC’ nhận I là trung điểm, điều này chứng tỏ C, C’ đối xứng với nhau qua I.

a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AQ và MN=AQ
hay AQNM là hình bình hành
mà \(\widehat{A}=90^0\)
nên AQNM là hình chữ nhật

a: Xét tứ giác ADCB có
M là trung điểm của đường chéo AC
M là trung điểm của đường chéo BD
Do đó: ADCB là hình bình hành
Suy ra: AD//BC và AD=BC
Xét tứ giác AEBC có
N là trung điểm của đường chéo AB
N là trung điểm của đường chéo CE
Do đó: AEBC là hình bình hành
Suy ra: AE//BC và AE=BC
Ta có: AD//BC
AE//BC
mà AD và AE có điểm chung là A
nên D,A,E thẳng hàng
mà AD=AE(=BC)
nên D và E đối xứng nhau qua A
a)xét hình tứ giác APBC' có AM=BM
CM=MP
-> dpcm
chúng minh tương tự với cacshinhf còn lại nhé
còn phần b mình chịu
A B C M N P Q A' B' C' K
a) Ta có: \(\Delta\)AMP=\(\Delta\)BMC' (c.g.c) => ^MAP=^MBC' (2 góc tương ứng)
2 góc trên So le trong nên AP//BC' và AP=BC' (2 cạnh tương ứng)
Xét tứ giác APBC': AP//BC' và AP=BC' => AC'=BP => APBC' là hình bình hành.
Bạn cũng chứng minh tương tự với các tứ giác BPCA' và CPAB'.
b) Gọi giao điểm của CC' và AA' là K.
Ta có: AC'=BP (câu a) mà BP=CA' => AC'=CA' .
Mặt khác: AC'//BP và BP//CA' (câu a) => AC'//CA'
=> \(\Delta\)AKC'=\(\Delta\)A'KC (g.c.g) => AK=A'K và C'K=CK (2 cạnh tương ứng)
Giống như vậy: AB'=PC=A'B và chứng minh được AB'//A'B
=> \(\Delta\)AB'K=A'BK (c.g.c) => ^AKB'=^A'KB (2 góc tương ứng) mà A;K và A' thẳng hàng
=> 3 điểm B;K;B' thẳng hàng và có thể suy ra KB=KB' (2 cạnh tương ứng)
Xét hình AC'BA'CB': Có K là giao điểm của các đường AA'; BB' và CC' (cmt)
Lại có: AK=A'K; C'K=CK và KB=KB' (đã c/m) => Hình AC'BA'CB' có 1 tâm đối xứng.