Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô hướng dẫn nhé nguyen van vu :)
K
a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)
b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.
c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.
Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)
nên ID =MD, mà MD=DB nên ID=DB.
Gọi K là giao của MH và AD.
Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)
Tương tự giao điểm của BC với MH cũng là trung điểm MH.
Tóm lại N trùng K hay MN vuông góc AB.
Gọi giao điểm của OM với đường tròn (O;R) là I
\(\Delta\)AMO vuông tại A có AI là đường trung tuyến ứng với cạnh huyền OM nên AI=\(\frac{1}{2}\)OM mà OM=2R nên AI=R.
\(\Delta\)OAI có OA=OI=AI(=R) nên \(\Delta\)OAI đều nên góc AOM=60 độ
Vì tiếp tuyến tại A và B của (O;R) cắt nhau tại M nên áp dụng tính chất 2 đường tiếp tuyến cắt nhau thì OM là tia phân giác của góc OAB hay góc AOM bằng một nửa góc AOB hay góc AOB bằng 2.60=120 độ
a: Xét (O) có
ΔMEN nội tiếp
MN là đường kính
Do đó: ΔMEN vuông tại E
=>NE\(\perp\)ME tại E
=>NE\(\perp\)DM tại E
Xét ΔDNM vuông tại N có NE là đường cao
nên \(DE\cdot DM=DN^2\)
b: Xét tứ giác ONDI có
\(\widehat{OND}+\widehat{OID}=90^0+90^0=180^0\)
=>ODNI là tứ giác nội tiếp
=>O,D,N,I cùng thuộc một đường tròn
mik chx học tứ giác nội tiếp