\(\left\{{}\begin{matrix}x=1-2t\\y=t\end{matrix}\right.\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

\(M\in d\Rightarrow M\left(1-2t;t\right)\)

\(\overrightarrow{AM}=\left(1-2t;t-1\right)\)

Ta có: \(AM=\sqrt{10}\Leftrightarrow AM^2=10\\ \Leftrightarrow\left(1-2t\right)^2+\left(t-1\right)^2=10\Leftrightarrow5t^2-6t-8=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=\frac{-4}{5}\end{matrix}\right. \)

\(t=2\Rightarrow M\left(-3;2\right)\\ t=\frac{-4}{5}\Rightarrow M\left(\frac{13}{5};\frac{-4}{5}\right)\)

30 tháng 3 2017

Ta có : \(MA=5\leftrightarrow x^2+\left(y-1\right)^2=5^2\)

Thay tọa độ điểm x,y vào tham số t vào pt trên ta được :

\(\left(2+2t\right)^2+\left(3+t-1\right)^2=25\)

\(\Leftrightarrow4t^2+8t+4+4+4t+t^2=25\)

\(\Leftrightarrow5t^2+12t-17=0\rightarrow t_1=1;t_2=-\dfrac{17}{5}\)

Với \(t_1=1\), ta được điểm \(x=4;y=4\Rightarrow M_1\left(4;4\right)\)

Với \(t_2=-\dfrac{17}{5}\)ta được điểm \(x=-\dfrac{24}{5};y=-\dfrac{2}{5}\Rightarrow M_2\left(-\dfrac{24}{5};-\dfrac{2}{5}\right)\)

18 tháng 7 2017

Phương trình tổng quát \(\Delta\):

\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0

a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)

Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5

<=> \(5y^2-18y-8=0\)

<=>y=4 và y=\(\dfrac{-2}{5}\)

Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))

b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0

Ta có hệ phương trình:

\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)

\(\begin{cases} x=-2\\ y=1 \end{cases}\)

=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d

c. Nhận thấy, điểm A\(\notin\)\(\Delta\)

Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)

Vì M\(\in\Delta\)=> M(2y-4;y)

Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)\(\overrightarrow{u}\)(2;1)

\(\overrightarrow{AM}\) (2y-4;y-1)

Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)

<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)

<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0

<=> 2(2y-4)+(y-1)=0

<=> 5y-9=0

<=> y= \(\dfrac{9}{5}\)

=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))

21 tháng 3 2017

\(M\in d\Rightarrow M\left(3-2t;1+3t\right)\)

\(\Rightarrow\)\(\overrightarrow{AM}=\left(-1-2t;1+3t\right)\)

\(\Rightarrow AM=\sqrt{\left(-1-2t\right)^2+\left(1+3t\right)^2}=5\)

\(\Leftrightarrow13t^2+10t-23=0\Rightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{-23}{13}\end{matrix}\right.\)

\(+t=1\Rightarrow M\left(1;4\right)\)

\(+t=\dfrac{-23}{13}\Rightarrow M=\left(\dfrac{85}{13};\dfrac{-56}{13}\right)\)

vậy có 2 điểm M cần tìm.

9 tháng 4 2017

a)\(\Rightarrow d:4x+5y+14=0\)

\(d':4x+5y+14=0\)

Ta có: \(\dfrac{4}{4}=\dfrac{5}{5}=\dfrac{14}{14}\) \(\Rightarrow d\equiv d'\)

b) \(\Rightarrow d:x+2y-5=0\)

Ta có: \(\dfrac{1}{2}=\dfrac{2}{4}=\dfrac{-5}{-10}\) \(\Rightarrow d\equiv d'\)

c) Ta có: \(\dfrac{1}{2}\ne\dfrac{1}{1}\) \(\Rightarrow d\) cắt \(d'\)

AH
Akai Haruma
Giáo viên
26 tháng 5 2020

Lời giải:

Đường thẳng $(d_1)$ có VTCP là \(\overrightarrow{u_1}=(-\sqrt{2}; \sqrt{2})\)

Đường thẳng $(d_2)$ có VTCP là \(\overrightarrow{u_2}=(-2;2)\)

\(\Rightarrow \overrightarrow{u_2}=\sqrt{2}.\overrightarrow{u_1}(1)\)

Gọi $A(2,2)$ thuộc $(d_1)$

Thay tọa độ điểm $A$ vào $(d_2)$ ta thấy không thỏa mãn nên $A\not\in (d_2)(2)$

Từ $(1);(2)\Rightarrow (d_1); (d_2)$ song song với nhau.

NV
5 tháng 3 2019

\(x^2+y^2-2x-4y-11=0\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2-16=0\)

Thay tọa độ dạng tham số của d vào pt (C) ta được:

\(\left(1+2t-1\right)^2+\left(-2+t-2\right)^2-16=0\)

\(\Leftrightarrow4t^2+\left(t-4\right)^2-16=0\Leftrightarrow5t^2-8t=0\)

\(\Leftrightarrow t\left(5t-8\right)=0\Rightarrow\left[{}\begin{matrix}t=0\\t=\frac{8}{5}\end{matrix}\right.\) \(\Rightarrow d\) cắt (C) tại 2 điểm A; B

Thay t vào pt đường thẳng d ta được tọa độ 2 giao điểm

\(A\left(1;-2\right)\)\(B\left(\frac{21}{5};\frac{-2}{5}\right)\)

NV
1 tháng 6 2020

Pt của d1 dạng tổng quát:

\(2\left(x-1\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-5=0\)

Pt d2 dạng tổng quát:

\(1\left(x-1\right)-2\left(y-1\right)=0\Leftrightarrow x-2y+1=0\)

Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}2x-y-5=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{11}{3};\frac{7}{3}\right)\)

b/ d' vuông góc d1 nên nhận \(\left(1;2\right)\) là 1 vtpt và \(\left(2;-1\right)\) là 1 vtcp

Phương trình tổng quát:

\(1\left(x-\frac{11}{3}\right)+2\left(y-\frac{7}{3}\right)=0\Leftrightarrow3x+6y-25=0\)

Pt tham số: \(\left\{{}\begin{matrix}x=\frac{11}{3}+2t\\y=\frac{7}{3}-t\end{matrix}\right.\)

Đề câu sau thiếu