K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

a) ta có : AN = AM (tính chất tiếp tuyến)

\(\Rightarrow\) tam giác AMN cân tại A

OA là tia phân giác cũng là đường cao

\(\Rightarrow\) OA \(\perp\) MN (đpcm)

24 tháng 6 2017

b) đặc H là giao điểm của MN và AO

ta có MH = HN (OA \(\perp\) MN \(\Rightarrow\) H là trung điểm MN)

mà CO = CN = R

\(\Rightarrow\) OH là đường trung bình của tam giác MNC

\(\Rightarrow\) OH // MC \(\Leftrightarrow\) MC // OA (đpcm)

10 tháng 12 2020

a) Xét (O) có 

AM là tiếp tuyến có M là tiếp điểm(gt)

AN là tiếp tuyến có N là tiếp điểm(gt)

Do đó: AM=AN; OM=ON(Tính chất hai tiếp tuyến cắt nhau)

Ta có: AM=AN(cmt)

nên A nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OM=ON(cmt)

nên O nằm trên đường trung trực của MN(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AO là đường trung trực của MN

hay AO⊥MN(đpcm)

b) Xét (O) có 

ΔMNC nội tiếp đường tròn(C,M,N∈(O))

NC là đường kính

Do đó: ΔMNC vuông tại M(Định lí)

⇒MN⊥MC

Ta có: MN⊥MC(cmt)

MN⊥AO(cmt)

Do đó: MC//AO(Định lí 1 từ vuông góc tới song song)

c) Áp dụng định lí Pytago vào ΔOMA vuông tại M, ta được:

\(OA^2=OM^2+MA^2\)

\(\Leftrightarrow AM^2=OA^2-OM^2=5^2-3^2=16\)

hay \(AM=\sqrt{16}=4cm\)

mà AM=AN(cmt)

nên AN=4cm

Gọi H là giao điểm của MN và AO

mà MN⊥AO tại trung điểm của MN

nên H là trung điểm của MN và MH⊥AO tại H

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAMO vuông tại M, ta được:

\(MH\cdot AO=MO\cdot MA\)

\(\Leftrightarrow MH\cdot5=4\cdot3=12\)

hay MH=2,4cm

mà \(MN=2\cdot MH\)(H là trung điểm chung của MN)

nên \(MN=2\cdot2.4=4.8cm\)

Chu vi tam giác AMN là: 

\(C=AM+AN+MN=5+5+4.8=14.8cm\)

1 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

Bài tập Tất cả

19 tháng 11 2017

â)vì tam giác bcd nội tiếp (ô) đường kính bd nên tam giác bcd vuông

19 tháng 11 2017

b)xet (o) co :oh vuong goc bd tai h nen h la trung diem bc(tc)                                                                                                               xet tam giac abc co ah la duong cao(gt) va la duong trung tuyen(cmt) nen tam giac abc can tai a                                                           nen goc bah=cah va ab=ac nen tam giac bao=tam giac cao                                                                                                                 nen goc oba=oca suy ra oca=90 do suy ra dpcm                  

5 tháng 12 2018

làm nhanh thi thôi

14 tháng 7 2020

Cho sửa lại đề tí ==* , câu b) là c/m MR // AO => MC // AO :>

O N C A M H

a. Ta có: AM = AN (tính chất hai tiếp tuyến cắt nhau)

Suy ra tam giác AMN cân tại A

Mặt khác AO là đường phân giác của góc MAN ( tính chất hai tiếp tuyến cắt nhau )

Suy ra AO là đường cao của tam giác AMN ( tính chất tam giác cân )

Vậy \(OA\perp MN\)

b. Tam giác MNC nội tiếp trong đường tròn (O) có NC là đường kính nên góc (CMN) = 90o

Suy ra: \(NM\perp MC\)

\(OA\perp MN\)(chứng minh trên)

Suy ra: OA // MC

c. Ta có: \(AN\perp NC\) (tính chất tiếp tuyến)

Áp dụng định lí Pitago vào tam giác vuông AON ta có :

AO2 = AN2 + ON2

Suy ra : AN2 = AO2 – ON2 = 52 – 32 = 16

AN = 4 (cm)

Suy ra: AM = AN = 4 (cm)

Gọi H là giao điểm của AO và MN

Ta có: \(MH=NH=\frac{MN}{2}\) (tính chất tam giác cân)

Tam giác AON vuông tại N có \(NH\perp AO\). Theo hệ thức lượng trong tam giác vuông, ta có:

OA . NH = AN . ON => \(NH=\frac{\left(AN.ON\right)}{AO}=\frac{\left(4.3\right)}{5}=2,4\)

MN = 2.NH = 2.2,4 = 4,8 (cm)

Vậy .....................

26 tháng 12 2021

undefined

21 tháng 1 2021

A M C O N

a) Ta có : OM = ON ( =R )

=> O thuộc trung trực của MN (1)

AM = AN ( tính chất 2 tt cắt nhau )

=> A thuộc trung trực của MN (2)

Từ (1) và (2) => OA là đường trung trực của đoạn thẳng MN

Vậy : \(OA\perp MN\left(đpcm\right)\)

b) Xét tam giác MNC , ta có : MO = NO = OC ( =bk )

\(\Rightarrow MO=\frac{1}{2}NC\Rightarrow\Delta MNC\)vuông tại M

\(\Rightarrow MC\perp MN\left(3\right)\)

Theo ( c/m câu a ) : \(OA\perp MN\left(4\right)\)

Từ (3) và (4) => MC // AO ( đpcm )

c) Áp dụng đlí Py -ta - go cho tam giác AMO vuông tại M , ta có :

\(OA^2=AM^2+MO^2\)

\(AM^2=OA^2-MO^2=5^2-3^2=16\)

\(AM^2=16\Rightarrow AM=4\left(cm\right)\)

Áp dụng hệ thức lượng cho tam giác AMO vuông tại M , đường cao MI :

Ta có : AM . MO = AO . MI

\(MI=\frac{AM.MO}{AO}=\frac{4.3}{5}=2,4\)

\(\Rightarrow MN=2.MI=2.2,4=4,8\)

Vậy : AM = AN = 4cm

         MN = 4,8 cm