Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giao điểm với Ox: \(\left\{{}\begin{matrix}\frac{x}{3}+\frac{y}{4}=1\\y=0\end{matrix}\right.\) \(\Rightarrow A\left(3;0\right)\)
Giao với Oy: \(\left\{{}\begin{matrix}\frac{x}{3}+\frac{y}{4}=1\\x=0\end{matrix}\right.\) \(\Rightarrow B\left(0;4\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(-3;4\right)\Rightarrow AB=\sqrt{\left(-3\right)^2+4^2}=5\)
Giả sử d có 1 vtpt là \(\left(a;b\right)\) với \(a^2+b^2\ne0\)
\(cos45^0=\frac{\left|a.2+b.\left(-1\right)\right|}{\sqrt{a^2+b^2}.\sqrt{2^2+\left(-1\right)^2}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow2\left(2a-b\right)^2=5a^2+5b^2\)
\(\Leftrightarrow2\left(4a^2-4ab+b^2\right)=5a^2+5b^2\)
\(\Leftrightarrow3a^2-8ab-3b^2=0\)
\(\Leftrightarrow\left(a-3b\right)\left(3a+b\right)=0\Rightarrow\left[{}\begin{matrix}a=3b\\b=-3a\end{matrix}\right.\)
Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(3;1\right)\\\left(1;-3\right)\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3\left(x-1\right)+1\left(y-1\right)=0\\1\left(x-1\right)-3\left(y-1\right)=0\end{matrix}\right.\)
Gọi hoành độ M là a, do M thuộc \(\Delta\Rightarrow y_M=4-2a\Rightarrow M\left(a;4-2a\right)\)
\(\Rightarrow\overrightarrow{OM}=\left(a;4-2a\right)\) ; \(\overrightarrow{OA}=\left(1;-2\right)\)
\(\Rightarrow2\overrightarrow{OM}-\overrightarrow{OA}=2\left(a;4-2a\right)-\left(1;-2\right)=\left(2a-1;10-4a\right)\)
\(\Rightarrow\left|2\overrightarrow{OM}-\overrightarrow{OA}\right|=A=\sqrt{\left(2a-1\right)^2+\left(10-4a\right)^2}\)
\(\Rightarrow A=\sqrt{20a^2-84a+101}=\sqrt{20\left(a-\dfrac{21}{10}\right)^2+\dfrac{384}{5}}\ge\sqrt{\dfrac{384}{5}}\)
\(\Rightarrow A_{min}=\sqrt{\dfrac{384}{5}}\) khi \(a=\dfrac{21}{10}\)
\(\Rightarrow M\left(\dfrac{21}{10};\dfrac{-1}{5}\right)\)
Đường tròn (C) tâm \(I\left(-1;2\right)\) bán kính \(R=\sqrt{\left(-1\right)^2+2^2+4}=3\)
Áp dụng định lý Pitago:
\(d\left(I;d\right)=\sqrt{R^2-\left(\frac{6}{2}\right)^2}=0\)
\(\Rightarrow d\) đi qua I
d vuông góc \(\Delta\) nên d nhận \(\left(1;2\right)\) là 1 vtpt
Phương trình d:
\(1\left(x+1\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-3=0\)
Gọi \(A\left(a;1-a\right)\) ; \(B\left(b;2b-1\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(a-1;2-a\right)\\\overrightarrow{MB}=\left(b-1;2b\right)\end{matrix}\right.\)
\(2\overrightarrow{MA}+\overrightarrow{MB}=0\Leftrightarrow\left(2a-2;4-2a\right)+\left(b-1;2b\right)=\left(0;0\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-2+b-1=0\\4-2a+2b=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2a+b=3\\-2a+2b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{5}{3}\\b=-\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow A\left(\frac{5}{3};-\frac{2}{3}\right);B\left(-\frac{1}{3};-\frac{5}{3}\right)\) \(\Rightarrow\overrightarrow{AB}=\left(2;1\right)\)
Phương trình AB:
\(1\left(x-\frac{5}{3}\right)-2\left(y+\frac{2}{3}\right)=0\Leftrightarrow x-2y-3=0\)
Gọi phương trình d có dạng \(y=\frac{5}{3}x+b\)
Do d qua A nên: \(\frac{5}{3}.3+b=1\Rightarrow b=-4\)
Vậy pt d là: \(y=\frac{5}{3}x-4\Leftrightarrow5x-3y-12=0\)
a/ Đề thiếu, đường thẳng d qua đâu nữa bạn?
b/ \(\overrightarrow{BA}=\left(4;-4\right)=4\left(1;-1\right)\) \(\Rightarrow\) pt AB có dạng:
\(1\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow x+y-4=0\)
\(\Rightarrow\) Chiều cao từ C của tam giác ABC bằng khoảng cách từ C đến AB
\(d\left(C;AB\right)=\frac{\left|3-2-4\right|}{\sqrt{1^2+1^2}}=\frac{3\sqrt{2}}{2}\)
c/ Do M thuộc d \(\Rightarrow M\left(m;2m-3\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(m-3;2m-4\right)\\\overrightarrow{BM}=\left(m+1;2m-8\right)\end{matrix}\right.\)
\(MA=BM\Leftrightarrow\left(m-3\right)^2+\left(2m-4\right)^2=\left(m+1\right)^2+\left(2m-8\right)^2\)
\(\Leftrightarrow12m-48=0\Rightarrow m=4\Rightarrow M\left(4;5\right)\)
\(AB=\sqrt{4^2+\left(-4\right)^2}=4\sqrt{2}\) ; \(d\left(M;AB\right)=\frac{\left|4+5-4\right|}{\sqrt{1^2+1^2}}=\frac{5\sqrt{2}}{2}\)
\(\Rightarrow S_{ABM}=\frac{1}{2}.d\left(M;AB\right).AB=10\)
Thay tọa độ A và B vào d thấy kết quả cùng dấu \(\Rightarrow\) A và B nằm cùng phía so với d
Gọi C là điểm đối xứng A qua d \(\Rightarrow MA=CM\Rightarrow MA+MB=CM+MB\ge CB\)
\(\Rightarrow MA+MB\) nhỏ nhất khi M;B;C thẳng hàng hay M là giao điểm của đường thẳng BC và d
Phương trình d' qua A và vuông góc d có dạng:
\(1\left(x-1\right)+2\left(y-0\right)=0\Leftrightarrow x+2y-1=0\)
D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+2y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow D\left(-1;1\right)\)
C đối xứng A qua d khi và chỉ khi D là trung điểm AC \(\Rightarrow C\left(-3;1\right)\)
\(\Rightarrow\overrightarrow{CB}=\left(5;0\right)=5\left(1;0\right)\Rightarrow\) phương trình BC có dạng:
\(0\left(x-2\right)+1\left(y-1\right)=0\Leftrightarrow y-1=0\)
M là giao điểm d và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}y-1=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{2};1\right)\)
Gọi C là điểm đối xứng A qua delta, nối O với C cắt delta tại D
Với B là điểm bất kì trên delta, ta có \(AB=BC\)
Trong tam giác ABC, theo BĐT tam giác:
\(OB+BC\ge OC\Rightarrow OB+AB\ge OC\Rightarrow OA+AB+AB\ge OA+OC\)
Dấu "=" xảy ra khi B trùng D hay chu vi OAB đạt min khi B là giao điểm của OC và delta
Gọi I là hình chiếu của A lên delta \(\Rightarrow\) pt đường thẳng AI có dạng:
\(1\left(x-1\right)-2\left(y+2\right)=0\Leftrightarrow x-2y-5=0\)
\(\Rightarrow\) tọa độ I là nghiệm \(\left\{{}\begin{matrix}2x+y-4=0\\x-2y-5=0\end{matrix}\right.\) \(\Rightarrow I\left(\dfrac{13}{5};\dfrac{-6}{5}\right)\)
\(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}\\y_I=\dfrac{y_A+y_C}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_I-x_A=\dfrac{21}{5}\\y_C=2y_I-y_A=\dfrac{-2}{5}\end{matrix}\right.\) \(\Rightarrow C\left(\dfrac{21}{5};\dfrac{-2}{5}\right)\)
\(\Rightarrow\overrightarrow{OC}=\left(\dfrac{21}{5};\dfrac{-2}{5}\right)\) \(\Rightarrow\) đường thẳng AC có 1 vecto pháp tuyến là \(\left(2;21\right)\)
\(\Rightarrow\) pt đường thẳng OC: \(2x+21y=0\)
\(\Rightarrow\) tọa độ B là nghiệm của hệ: \(\left\{{}\begin{matrix}2x+y-4=0\\2x+21y=0\end{matrix}\right.\) \(\Rightarrow B\left(\dfrac{21}{10};\dfrac{-1}{5}\right)\)