Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{5+x}{4-x}=\dfrac{1}{2}\)
\(\Leftrightarrow2\left(5+x\right)=4-x\)
\(\Leftrightarrow2\left(5+x\right)-\left(4-x\right)=0\)
\(\Leftrightarrow10+2x-4+x=0\)
\(\Leftrightarrow6+3x=0\)
\(\Leftrightarrow3x=-6\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
b) \(\dfrac{25}{14}=\dfrac{x+7}{x-4}\)
\(\Leftrightarrow25\left(x-4\right)=14\left(x+7\right)\)
\(\Leftrightarrow25\left(x-4\right)-14\left(x+7\right)=0\)
\(\Leftrightarrow25x-100-14x-98=0\)
\(\Leftrightarrow11x-198=0\)
\(\Leftrightarrow11x=198\)
\(\Leftrightarrow x=18\)
Vậy x=18
c) \(\dfrac{3x-5}{x+4}=\dfrac{5}{2}\)
\(\Leftrightarrow2\left(3x-5\right)=5\left(x+4\right)\)
\(\Leftrightarrow2\left(3x-5\right)-5\left(x+4\right)=0\)
\(\Leftrightarrow6x-10-5x-20=0\)
\(\Leftrightarrow x-30=0\)
\(\Leftrightarrow x=30\)
Vậy x=30
d) \(\dfrac{3x-1}{2x+1}=\dfrac{3}{7}\)
\(\Leftrightarrow7\left(3x-1\right)=3\left(2x+1\right)\)
\(\Leftrightarrow7\left(3x-1\right)-3\left(2x+1\right)=0\)
\(\Leftrightarrow21x-7-6x-3=0\)
\(\Leftrightarrow15x-10=0\)
\(\Leftrightarrow15x=10\)
\(\Leftrightarrow x=\dfrac{10}{15}=\dfrac{2}{3}\)
Vậy \(x=\dfrac{2}{3}\)
Đề bài trên sai. Đề đúng: CM: \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{97}{98}.\dfrac{99}{100}>\dfrac{\sqrt{2}}{20}\).
nó rảnh quá hóa rồ ý mà thông cảm cho nó nha Phạm Phú Hoàng Long
\(\text{a) }3x+\dfrac{4}{9}=2x+\dfrac{11}{18}\\ \Leftrightarrow3x-2x=\dfrac{11}{18}-\dfrac{4}{9}\\ \Leftrightarrow x=\dfrac{1}{6}\\ \text{Vậy }x=\dfrac{1}{6}\\ \)
\(\text{b) }\dfrac{7}{12}+\dfrac{2}{3}:x=\dfrac{5}{8}\\ \Leftrightarrow\dfrac{2}{3}:x=\dfrac{1}{24}\\ \Leftrightarrow x=16\\ \text{Vậy }x=16\\ \)
\(\text{c) }\left|2.5-x\right|-\dfrac{1}{5}=1.2\\ \Leftrightarrow\left|2.5-x\right|=1.4\\ \Leftrightarrow\left[{}\begin{matrix}2.5-x=-1.4\\2.5-x=1.4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3.9\\x=1.1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{39}{10}\\x=\dfrac{11}{10}\end{matrix}\right.\\ \text{Vậy }x=\dfrac{39}{10}\text{ hoặc }x=\dfrac{11}{10}\\ \)
\(\text{d) }2^{x+1}+2^{x+2}=192\\ \Leftrightarrow2^x\cdot2+2^x\cdot4=192\\ \Leftrightarrow2^x\left(2+4\right)=192\\ \Leftrightarrow2^x\cdot6=192\\ \Leftrightarrow2^x=32\\ \Leftrightarrow2^x=2^5\\ \Leftrightarrow x=5\\ \text{Vậy }x=5\\ \)
ĐK \(x\ne-2;-3;-5;-6\)
\(\Leftrightarrow\dfrac{x-1}{x+2}-1-\left(\dfrac{x-2}{x+3}-1\right)=\dfrac{x-4}{x+5}-1-\left(\dfrac{x-5}{x+6}-1\right)\)
\(\Leftrightarrow\dfrac{x-1-x-2}{x+2}-\dfrac{x-2-x-3}{x+3}=\dfrac{x-4-x-5}{x+5}-\dfrac{x-5-x-6}{x+6}\)
\(\Leftrightarrow\dfrac{-3}{x+2}-\dfrac{-5}{x+3}=\dfrac{-9}{x+5}-\dfrac{-11}{x+6}\)
\(\Leftrightarrow\dfrac{3}{x+2}-\dfrac{5}{x+3}=\dfrac{9}{x+5}-\dfrac{11}{x+6}\)
\(\Leftrightarrow\dfrac{3}{x+2}+\dfrac{11}{x+6}=\dfrac{9}{x+5}+\dfrac{5}{x+3}\)
\(\Leftrightarrow\dfrac{3\left(x+6\right)+11\left(x+2\right)}{\left(x+2\right)\left(x+6\right)}=\dfrac{9\left(x+3\right)+5\left(x+5\right)}{\left(x+3\right)\left(x+5\right)}\)
\(\Leftrightarrow\dfrac{14x+40}{\left(x+2\right)\left(x+6\right)}=\dfrac{14x+52}{\left(x+3\right)\left(x+5\right)}\)
\(\Leftrightarrow\left(x+2\right)\left(x+6\right)\left(14x+52\right)=\left(x+3\right)\left(x+5\right)\left(14x+40\right)\)
\(\Leftrightarrow\left(x^2+8x+12\right)\left(14x+52\right)=\left(x^2+8x+15\right)\left(14x+40\right)\)
\(\Leftrightarrow14x\left(x^2+8x+12\right)+52\left(x^2+8x+12\right)=14x\left(x^2+8x+15\right)+40\left(x^2+8x+15\right)\)
\(\Leftrightarrow14x\left(x^2+8x\right)+12.14x+52\left(x^2+8x\right)+52.12=14x\left(x^2+8x\right)+15.14x+40\left(x^2+8x\right)+15.40\)
\(\Leftrightarrow12\left(x^2+8x\right)-42x+24=0\)
\(\Leftrightarrow12x^2+54x+24=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-4\end{matrix}\right.\)
a)\(\eqalign{ & A\sin {x \over 5} = \sin {x \over 5}\cos {x \over 5}\cos {{2x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} \cr & = {1 \over 2}\sin {{2x} \over 5}\cos {{2x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} \cr & = {1 \over 4}\sin {{4x} \over 5}\cos {{4x} \over 5}\cos {{8x} \over 5} = {1 \over 8}\sin {{8x} \over 5}\cos {{8x} \over 5} \cr & = {1 \over {16}}\sin {{16x} \over 5} \cr} \)
Suy ra biểu thức rút gọn \(A =\sin{{16x} \over 5}:16\sin {x \over 5}\)
b)\(\eqalign{ & B = \sin {x \over 7} + 2\sin {{3x} \over 7} + \sin {{5x} \over 7} = 2\sin {{3x} \over 7} + (\sin {x \over 7} + \sin {{5x} \over 7}) \cr & = 2\sin {{3x} \over 7} + 2\sin {1 \over 2}({{5x} \over 7} + {x \over 7})cos{1 \over 2}({{5x} \over 7} - {x \over 7}) \cr & = 2\sin {{3x} \over 7}(1 + \cos {{2x} \over 7}) = 4\sin {{3x} \over 7}{\cos ^2}{x \over 7} \cr}\)
Ta có: A=1>\(\dfrac{5}{x}\)> 0(vì x>5)(1)
B= \(\dfrac{5}{x}\)+1=\(\dfrac{5+x}{x}\)>1(2)
C= \(\dfrac{5}{x}\)-1=\(\dfrac{5-x}{x}\) < 0(3)
D=\(\dfrac{x}{5}\)>1(4)
Từ(1),(2),(3),(4):
Ta thấy đáp án C là đáp án duy nhất bé hơn không nên đáp án C= \(\dfrac{5}{x}\)-1 là đáp án có số nhỏ nhất.
a) \(\dfrac{3}{5}.\dfrac{1}{x}-\dfrac{1}{3}=\dfrac{4}{6}\)
\(\Leftrightarrow\dfrac{3}{5x}=1\)
\(\Leftrightarrow x=\dfrac{5}{3}\)
b) \(\dfrac{x}{2}=-\dfrac{2y}{8}=\dfrac{3z}{15}\)
áp dụng dãy tí số = nhau
\(\dfrac{x}{2}=-\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{2+8+15}=\dfrac{1200}{15}=80\)
\(\Leftrightarrow\dfrac{x}{2}=80\Rightarrow x=160\)
\(\Leftrightarrow-\dfrac{y}{4}=80\Rightarrow y=-320\)
\(\Leftrightarrow\dfrac{z}{5}=80\Rightarrow z=400\)
Ta có: \(\dfrac{x+5}{100}+\dfrac{x+5}{99}=\dfrac{x+5}{98}+\dfrac{x+5}{97}\)
=> \(\dfrac{x+5}{100}+\dfrac{x+5}{99}-\dfrac{x+5}{98}-\dfrac{x+5}{97}=0\)
=> \(\left(x+5\right).\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\)
=> \(x+5=0\)
=> \(x=-5\)
Vậy x= -5