Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy-3x-y=6\)
\(=>xy+3x-y-3=6-3\)
\(=>x\left(y+3\right)-\left(y+3\right)=3\)
\(=>\left(y+3\right)\left(x-1\right)=3\)
y+3 | -1 | 3 | 1 | -3 | |
x-1 | -3 | 1 | 3 | -1 |
y+3 | -1 | 3 | -3 | 1 |
y | -4 | -1 | -7 | -3 |
x-1 | -3 | 1 | 3 | -1 |
x | -2 | 2 | 4 | 0 |
3a)Vì A là số nguyên
=>\(3n+9⋮n-4=>3n-12+21⋮n-4=>3.\left(n-4\right)+21⋮n-4\)
Mà \(\text{3 . (n - 4)}⋮n-4\)
=>\(21⋮n-4=>n-4\inƯ\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
(Vì n là số nguyên => n - 4 là 1 số nguyên)
=>\(n\in\left\{-17;-3;1;3;5;9;11;25\right\}\)
Ta có bảng sau:
n | -17 | -3 | 1 | 3 | 5 | 9 | 11 | 25 |
3n + 9 | -42 | 0 | 12 | 18 | 24 | 36 | 42 | 84 |
n - 4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
\(A=\dfrac{3n+9}{n-4}\) | 2 | 0 | -4 | -18 | 24 | 12 | 6 | 4 |
Vậy.....
b)Vì B là số nguyên
=>\(2n-1⋮n+5=>2n+10-11⋮n+5=>2\left(n+5\right)-11⋮n+5\)
Mà \(\text{2 ( n + 5)}⋮n+5\)
=>\(11⋮n+5=>n+5\in\left\{-11;-1;1;11\right\}\)
(Vì n là số nguyên=> n + 5 là số nguyên)
=> \(n\in\left\{-16;-6;-4;6\right\}\)
Ta có bảng sau:
n | -16 | -6 | -4 | 6 |
2 n - 1 | -33 | -13 | -9 | 11 |
n + 5 | -11 | -1 | 1 | 11 |
\(B=\dfrac{2n-1}{n+5}\) | 3 | 13 | -9 |
1 |
Vậy.......
a ) \(7x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{7}\) và \(x-y=16\)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\)
\(\Rightarrow\dfrac{x}{3}=-4\Leftrightarrow x=-12\)
\(\Rightarrow\dfrac{x}{7}=-4\Leftrightarrow x=-28\)
Vậy .................
b ) \(\dfrac{x}{2}=\dfrac{y}{5}\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\)
\(\Leftrightarrow x=2k;y=5k\)
Mà \(x.y=10\)
\(\Rightarrow2k.5k=10\Leftrightarrow10k^2=10\Leftrightarrow\left[{}\begin{matrix}k=1\\k=-1\end{matrix}\right.\)
2 TH xảy ra :
-Với k = 1 , thì :
\(\left[{}\begin{matrix}x=2.1=2\\y=5.1=5\end{matrix}\right.\)
- Với k=-1, thì :
\(\left[{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)
Vậy.............
c ) \(\dfrac{x}{4}=\dfrac{y}{3}\Leftrightarrow\dfrac{2x}{8}=\dfrac{5y}{15}\) và \(2x+5y=69\)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{2x}{8}=\dfrac{5y}{15}=\dfrac{2x+5y}{8+15}=\dfrac{69}{23}=3\)
\(\Rightarrow\dfrac{2x}{8}=3\Leftrightarrow2x=24\Leftrightarrow x=12\)
\(\Rightarrow\dfrac{5y}{15}=3\Leftrightarrow5y=45\Leftrightarrow y=9\)
d ) \(5x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{5}\Leftrightarrow\dfrac{4x}{12}=\dfrac{3y}{15}\) và \(4x-3y=-99\)
Theo tính chất của dãy tỉ số bằng nhau , ta có :
\(\dfrac{4x}{12}=\dfrac{3y}{15}=\dfrac{4x-3y}{12-15}=\dfrac{-99}{-3}=33\)
\(\Leftrightarrow\dfrac{4x}{12}=33\Leftrightarrow4x=396\Leftrightarrow x=99\)
\(\Rightarrow\dfrac{3y}{15}=33\Leftrightarrow3y=495\Leftrightarrow y=165\)
Vậy .......
a. \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)=-12\\y=7.\left(-4\right)=-28\end{matrix}\right.\)
a)ta có 4+x/7+y=4/7
<=>7x+28=28+4y
<=> 7x=4y
lại có x+y=22
=>4/7y+y=22
<=>11/7y=22 <=> y=14
<=> x= 4/7*14=8
vậy x=8, y=14
b) Từ x/3=y/4 va y/5=z/6-->x/15=y/20=z/24 (1)
(1) = 2x/30=3y/60=4z/96=(2x+3y+4z)/186 (2) (t/c dãy tỉ số bằng nhau)
Ta lại có
(1) = 3x/45=4y/80=5z/120=(3x+4y+5z)/245 (3)(t/c dãy tỉ số bằng nhau)
Từ (2)(3) ta có(2x+3y+4z)/186=(3x+4y+5z)/245
Vậy M = (2x+3y+4z)/(3x+4y+5z)=186/245
ta có: x/a = y/b =z/c =xa/a^2 =yb/b^2 =zc/c^2 = (ax+by+cz)/(a^2+b^2+c^2)
=>x/a = (ax+by+cz)/(a^2+b^2+c^2) (1)
mặt khác ta có: x/a=y/b=z/c <=> x^2/a^2 =y^2/b^2 =z^2/c^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=>x^2/a^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2) (2)
từ (1) và (2) ta => (ax+by+cz)^2/(a^2+b^2+c^2)^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=> (x^2+y^2+z^2).(a^2+b^2+c^2)=(ax+by+cz)^2 => đpcm
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)
\(\dfrac{bz-cy}{a}=\dfrac{b.ck-c.bk}{a}=\dfrac{0}{a}=0\)(1)
\(\dfrac{cx-az}{b}=\dfrac{c.ak-a.ck}{b}=\dfrac{0}{b}=0\)(2)
\(\dfrac{ay-bz}{c}=\dfrac{a.bk-b.ak}{c}=\dfrac{0}{c}=0\)(3)
từ (1),(2) và(3) suy ra \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\left(đpcm\right)\)
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)
Theo tính chất của dãy tỉ số bằng nhau, có:
\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8x+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{12}\\\dfrac{x}{6}=\dfrac{z}{12}\\\dfrac{y}{6}=\dfrac{z}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)
Kết luận ...
A) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{35}{7}=5\)
=> x = 5.3 = 15.
=> y = 5.4 = 20.
B) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{2x+y}{6+4}=\dfrac{50}{10}=5\)
=> x = 5.3 = 15.
=> y = 5.4 = 20.
C) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{y-x}{4-3}=\dfrac{3}{1}=3\)
=> x = 3.3 = 9.
=> y = 3.4 = 12.
D) Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x.y}{3.4}=\dfrac{108}{12}=9\)
=> x = 9.3 = 27.
=> y = 9.4 = 36.
Chúc bạn học tốt :D