\(\dfrac{a}{b}=\dfrac{c}{d}\). CM rằng

\(\dfrac{7a-11b}{...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2022

Sửa đề:

\(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{7a-11b}{4a+5b}=\dfrac{7bk-11b}{4bk+5b}=\dfrac{7k-11}{4k+5}\)

\(\dfrac{7c-11d}{4c+5d}=\dfrac{7dk-11dk}{4dk+5d}=\dfrac{7k-11}{4k+5}\)

Do đó: \(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)

5 tháng 11 2017

Ta có:

\(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)

\(\Rightarrow\dfrac{7a-11b}{7c-11d}=\dfrac{4a+5b}{4c+5d}\)

\(\Leftrightarrow\dfrac{7a}{7c}=\dfrac{11b}{11d}=\dfrac{4a}{4c}=\dfrac{5b}{5d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Mặt khác:

\(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

5 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}\)= k

\(\dfrac{a}{b}=k\) = > a = bk

\(\dfrac{c}{d}=k\) = > c = dk

Ta có: \(\dfrac{7a-11b}{4a+5b}=\dfrac{7.bk-11b}{4.bk+5b}=\dfrac{\left(7.11\right).b.\left(k-1\right)}{\left(4.5\right).b.\left(k+1\right)}\dfrac{\left(7.11\right).\left(k-1\right)}{\left(4.5\right).\left(k+1\right)}\)(1)

\(\dfrac{7c-11d}{4c+5d}=\dfrac{7.dk-11d}{4.dk+5d}=\dfrac{\left(7.11\right).d.\left(k-1\right)}{\left(4.5\right).d.\left(k+1\right)}=\dfrac{\left(7.11\right).\left(k-1\right)}{\left(4.5\right).\left(k+1\right)}\left(2\right)\)Từ (1) và (2) = > \(\dfrac{7a-11b}{4a+5b}=\dfrac{7c-11d}{4c+5d}\)

5 tháng 2 2017

ta có:

\(\frac{7a-11b}{4a+5b}=\frac{7c-11d}{4c+5d}\)

\(\Rightarrow\frac{7a-11b}{7c-11d}=\frac{4a+5b}{4c+5d}\)

\(\Leftrightarrow\frac{7a}{7c}=\frac{11b}{11d}=\frac{4a}{4c}=\frac{5b}{5d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Mặt khác:

\(\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrowđpcm\)

5 tháng 2 2017

sai bn

29 tháng 11 2017

Từ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{ab}{cd}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{a^2}{c^2}=\dfrac{ab}{cd}=\dfrac{7a^2}{7c^2}=\dfrac{3ab}{3cd}=\dfrac{7a^2+3ab}{7c^2+3cd}\)

\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{11a^2}{11c^2}=\dfrac{8b^2}{8d^2}=\dfrac{11a^2-8b^2}{11c^2-8d^2}\)

\(\dfrac{7a^2+3ab}{7c^2+3cd}=\dfrac{11a^2-8b^2}{11c^2-8d^2}\)

\(\Rightarrow\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)

3 tháng 12 2017

thank bn nha

7 tháng 10 2017

1) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (1)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

2) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=q\Rightarrow\left\{{}\begin{matrix}a=bq\\c=dq\end{matrix}\right.\)

Ta có: \(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bq+b}{dq+d}\right)^2=\left[\dfrac{b\left(q+1\right)}{d\left(q+1\right)}\right]^2=\dfrac{b}{d}\) (1)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bq\right)^2+b^2}{\left(dq\right)^2+d^2}=\dfrac{b^2.q^2+b^2}{d^2.q^2+d^2}=\dfrac{b^2\left(q^2+1\right)}{d^2\left(q^2+1\right)}=\dfrac{b^2}{d^2}=\dfrac{b}{d}\) (2)

Từ (1) và (2) \(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

8 tháng 10 2017

lm cách ap dung tc day ti so = nhau

20 tháng 12 2017

a) Ta co: a/b = c/d= k

=> a=bk

c=dk

Ta co: a-b/a+b = bk-b/bk+b = b(k-1)/b(k+1) = k-1/k+1 (1)

Ta co: c-d/c+d = dk-d/dk+d = d(k-1)/d(k+1) = k-1/k+1 (2)

Tu (1) va (2)

=> a-b/a+b=c-d/c+d

20 tháng 12 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)

a) Từ (*) ta có:

\(\dfrac{a-b}{a+b}=\dfrac{bk-b}{bk+b}=\dfrac{b\left(k-1\right)}{b\left(k+1\right)}=\dfrac{k-1}{k+1}\) (1)

\(\dfrac{c-d}{c+d}=\dfrac{dk-d}{dk+d}=\dfrac{d\left(k-1\right)}{d\left(k+1\right)}=\dfrac{k-1}{k+1}\) (2)

Từ (1) và (2) suy ra \(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)

b) Từ (*) ta có:

\(\dfrac{7a-4b}{3a+5b}=\dfrac{7bk-4b}{3bk+5b}=\dfrac{b\left(7k-4\right)}{b\left(3k+5\right)}=\dfrac{7k-4}{3k+5}\) (3)

\(\dfrac{7c-4d}{3c+5d}=\dfrac{7dk-4d}{3dk+5d}=\dfrac{d\left(7k-4\right)}{d\left(3k+5\right)}=\dfrac{7k-4}{3k+5}\) (4)

Từ (3) và (4) suy ra \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)

c) Từ (*) ta có:

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\) (5)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (6)

\(\dfrac{\left(c-a\right)^2}{\left(d-b\right)^2}=\dfrac{\left[\left(dk\right)-\left(bk\right)\right]^2}{\left(d-b\right)^2}=\dfrac{\left[k\left(d-b\right)\right]^2}{\left(d-b\right)^2}=k^2\) (7)

Từ (5), (6) và (7) suy ra \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(c-a\right)^2}{\left(d-b\right)^2}\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\). Khi đó ta có:

a)

\((a+c)(b-d)=(bk+dk)(b-d)=k(b+d)(b-d)\)

\((a-c)(b+d)=(bk-dk)(b+d)=k(b-d)(b+d)=k(b+d)(b-d)\)

\(\Rightarrow (a+c)(b-d)=(a-c)(b+d)\) (đpcm)

b)

\((a+c)b=(bk+dk)b=k(b+d).b=bk(b+d)\)

\((b+d).a=(b+d).bk=bk(b+d)\)

\(\Rightarrow (a+c)b=(b+d)a\)

c)

\(a(b-d)=bk(b-d)\)

\(b(a-c)=b(bk-dk)=bk(b-d)\)

\(\Rightarrow a(b-d)=b(a-c)\)

d)

\((b+d).c=(b+d).dk=dk(b+d)\)

\((a+c)d=(bk+dk)d=k(b+d)d=dk(b+d)\)

\(\Rightarrow (b+d)c=(a+c)d\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

e)

\((b-d).c=(b-d).dk=dk(b-d)\)

\((a-c)d=(bk-dk)d=k(b-d)d=dk(b-d)\)

\(\Rightarrow (b-d)c=(a-c)d\)

f)

\((a+b)(c-d)=(bk+b)(dk-d)=b(k+1)d(k-1)=bd(k-1)(k+1)\)

\((a-b)(c+d)=(bk-b)(dk+d)=b(k-1)d(k+1)=bd(k-1)(k+1)\)

\(\Rightarrow (a+b)(c-d)=(a-b)(c+d)\)

g)

\((2a+3c)(2b-3d)=(2bk+3dk)(2b-3d)=k(2b+3d)(2b-3d)\)

\((2a-3c)(2b+3d)=(2bk-3dk)(2b+3d)=k(2b-3d)(2b+3d)\)

\(\Rightarrow (2a+3c)(2b-3d)=(2a-3c)(2b+3d)\)

h)

\((4a+3b)(4c-3d)=(4bk+3b)(4dk-3d)=b(4k+3)d(4k-3)=bd(4k+3)(4k-3)\)

\((4a-3b)(4c+3d)=(4bk-3b)(4dk+3d)=b(4k-3)d(4k+3)=bd(4k+3)(4k-3)\)

\(\Rightarrow (4a+3b)(4c-3d)=(4a-3b)(4c+3d)\)

i,k: Hoàn toàn tương tự.

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)

<=>\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{3a}{3c}=\dfrac{2b}{2d}\)

<=>\(\dfrac{5a-3b}{5c-3d}=\dfrac{3a-2b}{3c-2d}\)(đpcm)

Các câu sau tương tự

N
4 tháng 9 2017

Nguyễn Thị Hồng Nhung chị làm bài f đc ko ạ ???

7 tháng 12 2017

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=t\Leftrightarrow\left\{{}\begin{matrix}a=bt\\c=dt\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{2a+5b}{3a-4b}=\dfrac{2bt+5b}{3bt-4b}=\dfrac{b\left(2t+5\right)}{b\left(3t-4\right)}=\dfrac{2t+5}{3t-4}\\\dfrac{2c+5d}{3c-4d}=\dfrac{2dt+5d}{3dt-4d}=\dfrac{d\left(2t+5\right)}{d\left(3t-4\right)}=\dfrac{2t+5}{3t-4}\end{matrix}\right.\Rightarrowđpcm\)