\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) ( a,b,c,d khác 0 )
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

Á p dụng tính chất dãy tỉ số bằng nhau

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)

\(\Leftrightarrow\left(\dfrac{a}{c}\right)^2=\left(\dfrac{a-b}{c-d}\right)^2\Leftrightarrow\dfrac{a}{c}.\dfrac{b}{d}=\left(\dfrac{a-b}{c-d}\right)^2\)

suy ra đpcm

Câu 2: 

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=k+1\)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=k+1\)

Do đó: \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

giả sử điều phải chứng minh là đúng thì:

\(\dfrac{\left(a+c\right)^2}{\left(a-c\right)^2}=\dfrac{\left(b+d\right)^2}{\left(b-d\right)^2}\\ \Rightarrow\left[\left(a+c\right)\left(b-d\right)\right]^2=\left[\left(a-c\right)\left(b+d\right)\right]^2\\ \Leftrightarrow\left(ab+bc-ad-cd\right)^2=\left(ab+ad-bc-cd\right)^2\\ \Leftrightarrow\left(ab+bc-ad-cd\right)^2-\left(ab+ad-bc-cd\right)^2=0\\ \Leftrightarrow\left(ab+bc-ad-cd+ab+ad-bc-cd\right)\left(ab+bc-ad-cd-ab-ad+bc+cd\right)=0\\ \Leftrightarrow\left(2ab-2cd\right)\left(2bc-2ad\right)=0\\ \Leftrightarrow\left(ab-cd\right)\left(bc-ad\right)=0\\ \Rightarrow\left[{}\begin{matrix}ab-cd=0\\bc-ad=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}ab=cd\\bc=ad\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{c}=\dfrac{d}{b}\\\dfrac{a}{b}=\dfrac{c}{d}\left(đúng\right)\end{matrix}\right.\)

do đó điều phải chứng minh là đúng

12 tháng 4 2018

Hay quá ! Very good !banhqua

21 tháng 7 2017

Bài 2 : đề bài này chỉ cần a,b>0 , ko cần phải thuộc N* đâu

a, Áp dụng bất đẳng thức AM-GM cho 2 số lhoong âm a,b ta được :

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\) . Dấu "=" xảy ra khi a=b

b , Áp dụng BĐT AM-GM cho 2 số không âm ta được : \(a+b\ge2\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\)

Nhân vế với vế ta được :

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.2.\dfrac{\sqrt{ab}}{\sqrt{ab}}=4\left(đpcm\right)\)

Dấu "="xảy ra tại a=b

21 tháng 7 2017

Bài 1.

Vì a, b, c, d \(\in\) N*, ta có:

\(\dfrac{a}{a+b+c+d}< \dfrac{a}{a+b+c}< \dfrac{a}{a+b}\)

\(\dfrac{b}{a+b+c+d}< \dfrac{b}{a+b+d}< \dfrac{b}{a+b}\)

\(\dfrac{c}{a+b+c+d}< \dfrac{c}{b+c+d}< \dfrac{c}{c+d}\)

\(\dfrac{d}{a+b+c+d}< \dfrac{d}{a+c+d}< \dfrac{d}{c+d}\)

Do đó \(\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}< M< \left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)+\left(\dfrac{c}{c+d}+\dfrac{d}{c+d}\right)\)hay 1<M<2.

Vậy M không có giá trị là số nguyên.

8 tháng 9 2017

Bài 1:

a, \(\left(x-2\right)^2=9\)

\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)

b, \(\left(3x-1\right)^3=-8\)

\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)

\(\Rightarrow x=-\dfrac{1}{3}\)

c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)

\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)

\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)

d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)

\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)

\(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)

e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)

\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)

\(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)

f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\)\(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!
30 tháng 3 2017

a) \(5\dfrac{3}{8}-1\dfrac{9}{10}=\dfrac{43}{8}-\dfrac{19}{10}=\dfrac{215}{40}-\dfrac{76}{40}=\dfrac{139}{40}\)

b) \(\left(-3\dfrac{1}{4}\right)+\left(-2\dfrac{1}{3}\right)=-\dfrac{13}{4}+\left(-\dfrac{7}{3}\right)=-\dfrac{39}{12}+\left(-\dfrac{28}{12}\right)=\dfrac{-67}{12}\)

c) \(\left(-5\dfrac{1}{8}\right)+3\dfrac{2}{4}=\left(-\dfrac{41}{8}\right)+\dfrac{14}{4}=\left(-\dfrac{41}{8}\right)+\dfrac{28}{8}=-\dfrac{13}{8}\)

d)\(\left(-3\right)-\left(-2\dfrac{2}{5}\right)=\left(-3\right)-\left(-\dfrac{12}{5}\right)=\left(-\dfrac{15}{5}\right)+\left(-\dfrac{12}{5}\right)=-\dfrac{27}{5}\)

27 tháng 2 2018

Còn một cái nữa là ta có thể so sánh với số trung gian như 1 và 0 .

Vì a/b=c/d khi a.c=b.d

Giờ thì mình kết thúc bài làm.

8 tháng 8 2017

a,

\(\left(x-\dfrac{1}{2}\right)^2=0\\ \Rightarrow x-\dfrac{1}{2}=0\\ \Rightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

b,

\(\left(x-2\right)^2=1\\ \Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

Vậy \(x=3\text{ hoặc }x=1\)

c,

\(\left(2x-1\right)^3=-8\\ \Rightarrow2x-1=-2\\ \Rightarrow2x=-1\\ \Rightarrow x=\dfrac{-1}{2}\)

Vậy \(x=\dfrac{-1}{2}\)

d,

\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{1}{4}\\x+\dfrac{1}{2}=\dfrac{-1}{4}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-3}{4}\end{matrix}\right.\)

Vậy \(x=\dfrac{-1}{4}\text{ hoặc }x=\dfrac{-3}{4}\)

8 tháng 8 2017

a) \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow\left(x-\dfrac{1}{2}\right)^2=0^2\)

\(\Rightarrow x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

b) \(\left(x-2\right)^2=1\Rightarrow\left(x-2\right)^2=1^2\)

\(\Rightarrow\left[{}\begin{matrix}x-2=-1\\x-2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1+2\\x=1+2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

c) \(\left(2x-1\right)^3=-8\Rightarrow\left(2x-1\right)^3=-2^3\)

\(\Rightarrow2x-1=-3\Rightarrow2x=-3+1\)

\(\Rightarrow2x=2\Rightarrow x=1\)

Vậy \(x=1\)

d) \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Rightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=-\dfrac{1}{4}\\x+\dfrac{1}{2}=\dfrac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}-\dfrac{1}{2}\\x=\dfrac{1}{4}-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

12 tháng 7 2017

a) \(\dfrac{\left(0,6\right)^5}{\left(0,2\right)^6}=\dfrac{\left(0,2.3\right)^5}{\left(0,2\right)^5.\left(0,2\right)}=\dfrac{\left(0,2\right)^5.3^5}{\left(0,2\right)^5.\left(0,2\right)}=\dfrac{3^5}{0,2}=\dfrac{243}{0,2}=1215\)

c) \(2:\left(\dfrac{1}{2}-\dfrac{2}{3}\right)^2=2:\left(\dfrac{3}{6}-\dfrac{4}{6}\right)^2=2:\left(-\dfrac{1}{6}\right)^2=2:\dfrac{1}{36}=72\)

3 tháng 7 2017

Bài 2:

a) \(\left(x-3\right)^3+27=0\)

\(\Leftrightarrow\left(x-3\right)^3=0-27\)

\(\Leftrightarrow\left(x-3\right)^3=-27\)

\(\Leftrightarrow\left(x-3\right)^3=\left(-3\right)^3\)

\(\Leftrightarrow x-3=-3\)

\(\Leftrightarrow x=\left(-3\right)+3\)

\(\Leftrightarrow x=0\)

b) \(-125-\left(x+1\right)^3=0\)

\(\Leftrightarrow\left(x+1\right)^3=-125-0\)

\(\Leftrightarrow\left(x+1\right)^3=-125\)

\(\Leftrightarrow\left(x+1\right)^3=\left(-5\right)^3\)

\(\Leftrightarrow x+1=-5\)

\(\Leftrightarrow x=\left(-5\right)-1\)

\(\Leftrightarrow x=-6\)

c) \(\left(2x-\dfrac{1}{4}\right)^2-\dfrac{1}{16}=0\)

\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=0+\dfrac{1}{16}\)

\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=\dfrac{1}{16}\)

\(\Leftrightarrow\left(2x-\dfrac{1}{4}\right)^2=\left(\dfrac{1}{4}\right)^2\)

\(\Leftrightarrow2x-\dfrac{1}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow2x=\dfrac{1}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow2x=\dfrac{1}{2}\)

\(\Leftrightarrow x=\dfrac{1}{2}:2\)

\(\Leftrightarrow x=\dfrac{1}{4}\)

d) \(2^x+2^{x+1}=24\)

\(\Leftrightarrow2^x+2^x.2=24\)

\(\Leftrightarrow2^x\left(1+2\right)=24\)

\(\Leftrightarrow2^x.3=24\)

\(\Leftrightarrow2^x=24:3\)

\(\Leftrightarrow2^x=8\)

\(\Leftrightarrow2^x=2^3\)

\(\Rightarrow x=3\)

e) \(\left|x+\dfrac{1}{5}\right|-\dfrac{1}{2}=1\)

\(\Leftrightarrow\left|x+\dfrac{1}{5}\right|=1+\dfrac{1}{2}\)

\(\Leftrightarrow\left|x+\dfrac{1}{5}\right|=\dfrac{3}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{5}=-\dfrac{3}{2}\\x+\dfrac{1}{5}=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{17}{10}\\x=\dfrac{13}{10}\end{matrix}\right.\)

g) \(\left|x-3\right|+2x=10\)

\(\Leftrightarrow\left|x-3\right|=10-2x\)

\(\Leftrightarrow\left|x-3\right|=2.5-2x\)

\(\Leftrightarrow\left|x-3\right|=2\left(5-x\right)\)

(không chắc có nên làm tiếp câu g không, thấy đề cứ là lạ, có j sai sai...)

3 tháng 7 2017

Bài 1:

a) \(2^7+2^9⋮10\)

Ta có: \(2^7+2^9=2^{4.1}.2^3+2^{4.2}.2\)

\(\Leftrightarrow\overline{A6}.2^3+\overline{B6}.2\)

\(\Leftrightarrow\overline{A6}.8+\overline{B6}.2\)

\(\Leftrightarrow\overline{C8}+\overline{D2}\)

\(\Leftrightarrow\overline{E0}\)

\(\overline{E0}⋮10\) \(\Rightarrow2^7+2^9⋮10\)

b) \(8^{24}.25^{10}⋮2^{36}.5^{20}\)

Ta có: \(8^{24}.25^{10}=\left(2^3\right)^{24}.\left(5^2\right)^{10}\)

\(\Leftrightarrow2^{72}.5^{20}\)

Do \(2^{72}⋮2^{36}\)\(5^{20}⋮5^{20}\) \(\Rightarrow8^{24}.25^{10}⋮2^{36}.5^{20}\)

c) \(3^{10}+3^{12}⋮30\)

Ta có: \(3^{10}+3^{12}=3^{4.2}.3^2+3^{4.3}\)

\(\Leftrightarrow\overline{A1}.3^2+\overline{B1}\)

\(\Leftrightarrow\overline{A1}.9+\overline{B1}\)

\(\Leftrightarrow\overline{C9}+\overline{B1}\)

\(\Leftrightarrow\overline{D0}⋮10\)

(Chứng minh chia hết cho 10 rồi chứng minh chia hết cho 3, mình chưa tìm được cách làm, chờ chút)