\(\dfrac{a}{b}\)=\(\dfrac{b}{c}\)=\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2018

Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{a+b+c}{b+c+d}\\\dfrac{b}{c}=\dfrac{a+b+c}{b+c+d}\\\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}.\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\) (đpcm)

3 tháng 1 2018

bn cũng có thể tham khảo

https://hoc24.vn/hoi-dap/question/466226.html

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)

\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)

Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)

Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.

3 tháng 12 2017

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d} \)

5 tháng 12 2017

còn mấy con kia nữa bn.... Giúp cái...haha

31 tháng 10 2017

Bài 1:

Áp dụng t.c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)

1 tháng 11 2017

Thanks nha!!!

1 tháng 10 2017

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}\)

Ta đặt: \(\dfrac{a}{c}=\dfrac{b}{d}=k\) => a=ck ; b=dk

a) \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-\left(dk\right)^2}{c^2-d^2}=\dfrac{b^2k^2-d^2k^2}{c^2-d^2}=\dfrac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\)(1)

\(\dfrac{ab}{cd}=\dfrac{ck.dk}{cd}=\dfrac{k^2\left(c.d\right)}{cd}=k^2\) (2)

Từ (1) và (2) => \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)

b) \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(ck-dk\right)^2}{\left(c-d\right)^2}=\dfrac{k^2\left(c-d\right)^2}{\left(c-d\right)^2}=k^2\) (3)

Từ (2) và (3) => \(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\). Chúc bạn học tốt hehe

2 tháng 10 2017

thanks

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 1:

$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:

\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)

$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)

Từ $(1);(2)$ suy ra đpcm.

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 2:

Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:

$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)

30 tháng 10 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=b.k\\c=d.k\end{matrix}\right.\)

\((\dfrac{a+b}{c+d})^3=\left(\dfrac{bk+b}{dk+d}\right)^3=\left(\dfrac{b.\left(k+1\right)}{d.\left(k+1\right)}\right)^3=\left(\dfrac{b}{d}\right)^3\left(1\right)\)

\(\dfrac{a^3-b^3}{c^3-d^3}=\dfrac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\dfrac{b^3.\left(k^3-1\right)}{d^3.\left(k^3-1\right)}=\dfrac{b^3}{d^3}=\left(\dfrac{b}{d}\right)^3\)(2)

Từ (1) và (2) \(\Rightarrow\)\(\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{a^3-b^3}{c^3-d^3}\)

4 tháng 12 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Thay vào ta có:

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2\cdot k}{d^2\cdot k}=\dfrac{b^2}{d^2}\left(1\right)\)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)

\(=\dfrac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}\)

\(=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) suy ra: đpcm

4 tháng 12 2017

Gia su \(\dfrac{a}{b}=\dfrac{c}{d}=k\)=> a=bk; c=dk

The vao ta co:

\(\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}\)<=>\(\dfrac{b^2\cdot k}{d^2\cdot k}=\dfrac{b^2\cdot k^2-b^2}{d^2\cdot k^2-d^2}\)<=>\(\dfrac{b^2}{d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}\)

=>\(\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\)

17 tháng 6 2017

Bài 1:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a, Ta có: \(\dfrac{a+c}{c}=\dfrac{bk+dk}{dk}=\dfrac{\left(b+d\right)k}{dk}=\dfrac{b+d}{d}\)

\(\Rightarrowđpcm\)

b, Ta có: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (1)

\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

c, Ta có: \(\dfrac{a-c}{a}=\dfrac{bk-dk}{bk}=\dfrac{k\left(b-d\right)}{bk}=\dfrac{b-d}{b}\)

\(\Rightarrowđpcm\)

d, Ta có: \(\dfrac{3a+5b}{2a-7b}=\dfrac{3bk+5b}{2bk-7b}=\dfrac{b\left(3k+5\right)}{b\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\)(1)

\(\dfrac{3c+5d}{2c-7d}=\dfrac{3dk+5d}{2dk-7d}=\dfrac{d\left(3k+5\right)}{d\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

e, Sai đề

f, \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\left(\dfrac{bk-b}{dk-d}\right)^{2012}=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^{2012}=\dfrac{b^{2012}}{d^{2012}}\)(1)

\(\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}=\dfrac{b^{2012}k^{2012}+b^{2012}}{d^{2012}k^{2012}+d^{2012}}=\dfrac{b^{2012}\left(k^{2012}+1\right)}{d^{2012}\left(k^{2012}+1\right)}=\dfrac{b^{2012}}{d^{2012}}\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

17 tháng 6 2017

Hâm mộ :)))))

10 tháng 4 2017

hình như đề sai đó bạn

10 tháng 4 2017

bạn sửa hộ mik \(\left(\dfrac{a^2+b^2}{c^2+d^2}\right)^2\) thành\(\dfrac{a^2+b^2}{c^2+d^2}\)nha!!