Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
Vì \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\left(1\right)\)
Vì \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(dpcm\right)\)
a, \(\left(\dfrac{3}{7}+\dfrac{1}{2}\right)^2=\left(\dfrac{3}{7}\right)^2+2.\dfrac{3}{7}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\)
\(=\dfrac{9}{49}+\dfrac{3}{7}+\dfrac{1}{4}=\dfrac{169}{196}\)
b, \(\left(\dfrac{3}{4}-\dfrac{5}{6}\right)^2=\left(\dfrac{3}{4}\right)^2-2.\dfrac{3}{4}.\dfrac{5}{6}+\left(\dfrac{5}{6}\right)^2\)
\(=\dfrac{9}{16}-\dfrac{5}{4}+\dfrac{25}{36}=\dfrac{1}{144}\)
c, \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.5^4.4^4}{5^{10}.4^5}=\dfrac{1}{5^2.4}=\dfrac{1}{100}\)
d, \(\left(\dfrac{-10}{3}\right)^5.\left(\dfrac{-6}{5}\right)^4=\dfrac{\left(-10\right)^5}{3^5}.\dfrac{6^4}{5^4}\)
\(=\dfrac{5^5.\left(-2\right)^5.2^4.3^4}{3^5.5^4}=\dfrac{-\left(5.2^9\right)}{3}=\dfrac{-2560}{3}\)
Chúc bạn học tốt!!!
Bài 1.
a) Nhân 2 vào tỉ số thứ 2 rồi áp dụng tính chất của dãy tỉ số bằng nhau.
Kết quả:
\(\left\{{}\begin{matrix}x=\dfrac{8}{3}\\y=3\\z=\dfrac{8}{3}\end{matrix}\right.\)
b) \(\dfrac{x}{y}=\dfrac{2}{3}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{9}\)
Theo tính chất dãy tỉ số bằng nhau:
\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{x^2+y^2}{4+9}=\dfrac{52}{13}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=16\\y^2=36\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm4\\y=\pm6\end{matrix}\right.\)
Vậy ...
Bài 2.
a) \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{b}+1=\dfrac{c}{d}+1\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{ac}{bd}=\dfrac{c^2}{d^2}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}\)
\(\Leftrightarrow\dfrac{ac}{bd}=\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{a^2+c^2}{b^2+d^2}\)
Vậy ...
2:
b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=i\Rightarrow\left\{{}\begin{matrix}a=bi\\c=di\end{matrix}\right.\)
Ta có:
\(\dfrac{ac}{bd}=\dfrac{c^2i}{d^2i}=\dfrac{c^2}{d^2}=\left(\dfrac{c}{d}\right)^2=i^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2i^2+d^2i^2}{b^2+d^2}=\dfrac{i^2\left(b^2+d^2\right)}{b^2+d^2}=i^2\)
Từ đó suy ra \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\) (đpcm)
Bài 1 :
a, \(-1\dfrac{2}{3}\)= \(\dfrac{-5}{3}\)
Dựa vào tính chất của Tỉ lệ thức :
Ta có : \(\dfrac{x}{y}=\dfrac{-5}{3}\rightarrow\dfrac{x}{-5}=\dfrac{y}{3}\)
Dựa vào tính chất của dãy tỉ số = nhau
Ta có : \(\dfrac{x}{-5}=\dfrac{y}{3}=\dfrac{x+y}{\left(-5\right)+3}=\dfrac{18}{-2}=-9\)
\(\rightarrow\dfrac{x}{-5}=-9\rightarrow x=\left(-5\right).\left(-9\right)\Rightarrow x=45\\ \rightarrow\dfrac{y}{3}=-9\rightarrow y=3.\left(-9\right)\Rightarrow y=-27\)b,
Ta có :
( x + 4 ) . 7 = ( y + 7 ) . 4
\(\rightarrow\) 7x + 28 = 4y + 28
\(\rightarrow\) 7x = 4y
Vì 7x = 4y
\(\Rightarrow\) x = 22 / ( 4 + 7 ) . 7 = 14
\(\Rightarrow\) y = 22 - 14 = 8
Đợi mk lm câu 2 nha
4/ \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{24}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\) (đặt k)
Suy ra \(x=15k;y=20k;z=24k\)
Thay vào,ta có:
\(M=\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
a: \(\dfrac{2}{3}:\left(6x+7\right)=0.2:1\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{2}{3}:\left(6x+7\right)=\dfrac{1}{5}:\dfrac{7}{6}=\dfrac{6}{35}\)
\(\Leftrightarrow6x+7=\dfrac{35}{9}\)
=>6x=-28/9
hay x=-28/54=-14/27
b: \(\dfrac{a}{a+2b}=\dfrac{c}{c+2d}\)
\(\Leftrightarrow a\left(c+2d\right)=c\left(a+2b\right)\)
\(\Leftrightarrow ac+2ad=ac+2bc\)
=>2ad=2bc
=>ad=bc
=>a/b=c/d
Đặt a/b=c/d=k
=>a=bk; c=dk
\(A=\dfrac{a^2\cdot d^2-4b^2\cdot c^2}{abcd}=\dfrac{b^2k^2\cdot d^2-4\cdot b^2\cdot d^2k^2}{bk\cdot b\cdot dk\cdot d}\)
\(=\dfrac{-3b^2k^2d^2}{b^2k^2d^2}=-3\)
Bài 1:
a) ta có: \(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}=\frac{2y-4}{6}\)
ADTCDTSBN
có: \(\frac{x-1}{5}=\frac{2y-4}{6}=\frac{z-2}{2}=\frac{x-1+2y-4-z+2}{5+6-2}\)\(=\frac{\left(x+2y-z\right)-\left(1+4-2\right)}{9}=\frac{6-3}{9}=\frac{3}{9}=\frac{1}{3}\)
=>...
bn tự tính típ nhé!
b) ta có: \(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2+y^2}{4+9}=\frac{52}{13}=4\)
=>...
Bài 2:
a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{b}\left(đpcm\right)\)
b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (*)
mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Từ (*) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)
4) Ta có: a2=bc => aa=bc =>\(\dfrac{a}{b}=\dfrac{c}{a}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{a}=k\left(k\ne0\right)\)
=> a=bk ; c=ak
+)\(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\left(k-1\right)}=\dfrac{k+1}{k-1}\left(1\right)\)
+) \(\dfrac{c+a}{c-a}=\dfrac{ak+a}{ak-a}=\dfrac{a\left(k+1\right)}{a\left(k-1\right)}=\dfrac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2) => \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
5) phải xét 2 trường họp dài lắm nên mình chả muốn làm ~~
Giải:
Từ \(\left\{{}\begin{matrix}b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\\c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\) \(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\)
\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\left(1\right)\)
Mà \(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}\left(2\right)\)
Kết hợp \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\) (Đpcm)
Bài 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
b: \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7\cdot b^2k^2+5\cdot bk\cdot dk}{7\cdot b^2k^2-5\cdot bk\cdot dk}\)
\(=\dfrac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\dfrac{7b^2+5bd}{7b^2-5bd}\)(đpcm)
\(\dfrac{a+b}{3}=\dfrac{b+c}{5}=\dfrac{c+a}{6}\\ \Leftrightarrow\left\{{}\begin{matrix}5a+5b=3b+3c\\5c+5a=6b+6c\\6a+6b=3c+3a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a+2b-3c=0\left(1\right)\\5a-6b-c=0\left(2\right)\\a+2b-c=0\left(3\right)\end{matrix}\right.\)
Từ \(\left(1\right)\left(2\right)\Leftrightarrow8b-4c=0\Leftrightarrow2b=c\)
Từ \(\left(1\right)\left(3\right)\Leftrightarrow4a-4c=0\Leftrightarrow a-c=0\Leftrightarrow a=c=2b\)
\(\Leftrightarrow ac-4b^2=2b.2b-4b^2=4b^2-4b^2=0\left(đpcm\right)\)