Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=k\Rightarrow a=2k;b=5k;c=7k\)(1)
Thay (1) vào biểu thức trên ta có :
\(A=\dfrac{2k-5k+7k}{2k+10k-7k}=\dfrac{k\left(2-5+7\right)}{k\left(2+10-7\right)}=\dfrac{4}{5}\)
Vậy biểu thức \(A=\dfrac{4}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
a/2=b/5=c/7=\(\dfrac{a-b+c}{2-5+7}=\dfrac{a-2b+c}{2+10-7}\)
suy ra \(\dfrac{a-b+c}{a+2b-c}=\dfrac{2-5+7}{2+10-7}=\dfrac{4}{5}\)
Vậy biểu thức A=\(\dfrac{4}{5}\)
Tick em nha cô
Cho \(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\)
tìm giá trị của biểu thức A=\(\dfrac{a-b+c}{a+2b-c}\)
Em mới học lớp 6 ạ,có gì sai sót mong anh /chị bỏ qua
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\)
\(\Rightarrow a=2k\)
\(\Rightarrow b=5k\)
\(\Rightarrow c=7k\)
\(\Rightarrow A=\dfrac{a-b+c}{a+2b-c}=\dfrac{2k-5k+7k}{2k+2.5k-7k}\)
\(\Rightarrow A=\dfrac{4k}{2k+10k-7k}\)
\(\Rightarrow A=\dfrac{4k}{5k}\)
\(\Rightarrow A=\dfrac{4}{5}\)
Đặt a/2=b/5=c/7=k
=>a=2k; b=5k; c=7k
\(A=\dfrac{a-b+c}{a+2b-c}\)
\(=\dfrac{2k-5k+7k}{2k+10k-7k}=\dfrac{2-5+7}{2+10-7}=\dfrac{4}{5}\)
Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0
2/ Ta có :
\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)
\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)
\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)
\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)
\(=1-1=0\)
\(\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{7}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{a-b-c}{21-14-10}=\dfrac{-9}{-3}=3\)
\(\dfrac{a}{21}=3\Rightarrow a=63\)
\(\dfrac{b}{14}=3\Rightarrow b=42\)
\(\dfrac{c}{10}=3\Rightarrow c=30\)
Vậy......
Các câu còn lại tương tự
Mình hướng dẫn thôi nhé:
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\) . Sau đó thế vào biểu thức tính rồi suy ra đpcm
Ví dụ bài đầu tiên: Thế a = kb; c=kd vào biểu thức,ta có:
\(\dfrac{a}{a+b}=\dfrac{kb}{kb+b}=\dfrac{kb}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (1)
\(\dfrac{c}{c+d}=\dfrac{kd}{kd+d}=\dfrac{kd}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (2)
Từ (1) và (2) ,ta có đpcm: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
Các bài sau làm tương tự:Thế a=kb ; c=kd vào biểu thức rồi tính từng vế . Sau đó so sánh hai vế. Thấy hai vế = nhau => đpcm
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{2a+b+c+d-a-2b-c-d}{a-b}=1\)
\(\Rightarrow\left\{\begin{matrix}-a=b+c+d\\-b=a+c+d\\-c=b+c+d\\-d=a+b+c\end{matrix}\right.\)\(\Rightarrow a=b=c=d\)
\(M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{a+d}{b+c}\)
\(\Rightarrow M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}\)
\(\Rightarrow M=1+1+1+1\)
\(\Rightarrow M=4\)
Vậy \(M=4\)
Đặt a/2 = b/5 = c/7 = k => a=2k ; b=5k ; c=7k.
Thay vào biểu thức A ta được:
\(A=\dfrac{2k-5k+7k}{2k+2.5k-7k}=\dfrac{4k}{5k}=\dfrac{4}{5}\)
Vậy A=4/5