\(\dfrac{a-c}{b+c}+\dfrac{b-c}{c+a}+\dfrac{c-b}{a+b}=1\) Cmr: \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2018

ta có: \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}=1\)

<=>\(\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)

<=>\(\dfrac{a^2}{b+c}+\dfrac{ab}{b+c}+\dfrac{ac}{b+c}+\dfrac{b^2}{a+c}+\dfrac{ab}{a+c}+\dfrac{bc}{a+c}+\dfrac{c^2}{a+b}+\dfrac{ac}{a+b}+\dfrac{cb}{a+b}=a+c+b\)

<=>\(\dfrac{a^2}{b+c}+\dfrac{ab+ac}{b+c}+\dfrac{b^2}{a+c}+\dfrac{ab+bc}{a+c}+\dfrac{c^2}{a+b}+\dfrac{ac+cb}{a+b}=a+c+b\)

<=>\(\dfrac{a^2}{b+c}+\dfrac{a\left(b+c\right)}{b+c}+\dfrac{b^2}{a+c}+\dfrac{b\left(a+c\right)}{a+c}+\dfrac{c^2}{a+b}+\dfrac{c\left(a+b\right)}{a+b}=a+c+b\)

<=>\(\dfrac{a^2}{b+c}+a+\dfrac{b^2}{a+c}+b+\dfrac{c^2}{a+b}+c=a+c+b\)

<=>\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=a+c+b-a-c-b=0\) (đpcm)

chúc bạn học tốt ^ ^

27 tháng 3 2018

\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ba+bc\)

\(\Leftrightarrow ac< bc\)

\(\Leftrightarrow a< b\)(đúng)

a)Áp dụng

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=2\left(1\right)\)

Lại có:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{b+c+a}+\dfrac{c}{c+a+b}=1\left(2\right)\)

Từ (1) và (2)=> đpcm

27 tháng 3 2018

\(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow ac< bc\Rightarrow ac+ab< bc+ab\Rightarrow a\left(b+c\right)< b\left(a+c\right)\Rightarrow\dfrac{a\left(b+c\right)}{b\left(b+c\right)}< \dfrac{b\left(a+c\right)}{b\left(b+c\right)}\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)a) ta có

\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}\)\(\Leftrightarrow\dfrac{a+b+c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

NV
23 tháng 2 2019

Đặt \(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\)

Ta có

\(\dfrac{a^2}{b+c}=a\left(\dfrac{a}{b+c}\right)=a\left(\dfrac{a+b+c-\left(b+c\right)}{b+c}\right)=\dfrac{a\left(a+b+c\right)}{b+c}-a\)

Tương tự \(\dfrac{b^2}{a+c}=\dfrac{b\left(a+b+c\right)}{a+c}-b\) ; \(\dfrac{c^2}{a+b}=\dfrac{c\left(a+b+c\right)}{a+b}-c\)

Cộng vế với vế:

\(A=\dfrac{a}{b+c}\left(a+b+c\right)+\dfrac{b}{a+c}\left(a+b+c\right)+\dfrac{c}{a+b}\left(a+b+c\right)-\left(a+b+c\right)\)

\(A=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right)-\left(a+b+c\right)\)

\(A=a+b+c-\left(a+b+c\right)=0\) (đpcm)

23 tháng 2 2019

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)

\(=a\left(\dfrac{a}{b+c}+1\right)+b\left(\dfrac{b}{c+a}+1\right)+c\left(\dfrac{c}{a+b}+1\right)-\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)-\left(a+b+c\right)\)

\(=\left(a+b+c\right).1-\left(a+b+c\right)=0\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 3:

a) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

b) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)

\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)

Theo BĐT AM-GM:

\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)

Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 1: Thiếu đề.

Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)

Bài 4 a) Sai đề với \(x<0\)

b) Áp dụng BĐT AM-GM:

\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)

Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)

Bài 6: Áp dụng BĐT AM-GM cho $6$ số:

\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=d=1\)

10 tháng 8 2017

5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y

Ta có:

\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)

Vậy ta suy ra đpcm

b) Ta có: a+b>c;b+c>a;a+c>b

Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

.Tương tự:

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

Vậy ta có đpcm

10 tháng 8 2017

6) Ta có:

\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)

\(ab+cd=ab+\dfrac{1}{ab}\ge2\)

Suy ra đpcm

28 tháng 9 2017

1/(a+b) + 1/(b+c) + 1/(c+a) = 4/(a+b+c)

=> [1/(a+b) + 1/(b+c) + 1/(c+a)](a+b+c) = 4

=> 3 + c/(a+b) +a/(b+c) + b/(c+a) = 4

=> [3 + c/(a+b) + a/(b+c) + b/(c+a)](a+b+c) = 4(a+b+c)

=> 3(a+b+c) + c + c2(a+b) + a + a2(b+c) + b + b2(c+a) = 4(a+b+c)

=> a2(b+c) + b2(c+a) + c2(a+b) = 0

Ko cần cảm ơn, mik giúp bạn chỉ vì mik đang sắp rơi vào danh sách học sinh dốt của hoc24h ^^

Y
4 tháng 2 2019

1) \(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)

\(=a\left(b^3-c^3\right)-b\left[\left(b^3-c^3\right)+\left(a^3-b^3\right)\right]+c\left(a^3-b^3\right)\)

\(\left(do\left[\left(b^3-c^3\right)+\left(a^3-b^3\right)\right]=-\left(c^3-a^3\right)\right)\)

\(=\left(a-b\right)\left(b^3-c^3\right)+\left(c-b\right)\left(a^3-b^3\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)-\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left[\left(b^2+bc+c^2\right)-\left(a^2+ab+b^2\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left[\left(c^2-a^2\right)+\left(bc-ab\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left[\left(c-a\right)\left(c+a\right)+b\left(c-a\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

2) \(\dfrac{a-b}{b+c}+\dfrac{b-a}{c+a}+\dfrac{c-b}{a+b}=1\)

\(\Rightarrow\dfrac{a-c}{b+c}+1+\dfrac{b-a}{c+a}+1+\dfrac{c-b}{a+b}+1=4\)

\(\Rightarrow\dfrac{a-c+b+c}{b+c}+\dfrac{b-a+c+a}{c+a}+\dfrac{c-b+a+b}{a+b}=4\)

\(\Rightarrow\dfrac{a+b}{b+c}+\dfrac{b+c}{c+a}+\dfrac{c+a}{a+b}=4\)