Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a, b, c giống dạng nhau nên mình làm một câu a và câu d thôi nha, bạn tham khảo ^^
Giải:
a) \(a=\dfrac{b}{2}=\dfrac{c}{3}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(a=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a-b+c}{1-2+3}=\dfrac{10}{2}=5\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.1=5\\b=2.5=10\\c=3.5=15\end{matrix}\right.\)
b) \(a:b:c=3:4:5\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a^2}{9}=\dfrac{b^2}{16}=\dfrac{c^2}{25}\)
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}\)
Áp dụng tính chất của dãy tỉ sô bằng nhau:
\(\Rightarrow\dfrac{2a^2}{18}=\dfrac{2b^2}{32}=\dfrac{3c^2}{75}=\dfrac{2a^2+2b^2-3c^2}{18+32-75}=\dfrac{-100}{-25}=4\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2=\dfrac{4.18}{2}=36\\b^2=\dfrac{4.32}{2}=64\\c^2=\dfrac{4.75}{3}=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\pm6\\b=\pm8\\c=\pm10\end{matrix}\right.\)
\(\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{7}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{a-b-c}{21-14-10}=\dfrac{-9}{-3}=3\)
\(\dfrac{a}{21}=3\Rightarrow a=63\)
\(\dfrac{b}{14}=3\Rightarrow b=42\)
\(\dfrac{c}{10}=3\Rightarrow c=30\)
Vậy......
Các câu còn lại tương tự
a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)
Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )
=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)
VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)
Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)
hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)
3.
Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Leftrightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}\) và \(a+2b-3c=-20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
+) \(\dfrac{a}{2}=5\Rightarrow a=5.2=10\)
+) \(\dfrac{2b}{6}=5\Rightarrow2b=5.6=30\Rightarrow b=30:2=15\)
+) \(\dfrac{3c}{12}=5\Rightarrow3c=5.12=60\Rightarrow c=60:3=20\)
Vậy ...
3.
ta có:\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=>\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\) và a+2b-3c=-20
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\)=\(\dfrac{a+2b-3c}{2+6-12}\)\(\dfrac{-20}{-4}\)=5
vì\(\dfrac{a}{2}\)=5=>a=2.5=10
\(\dfrac{2b}{6}\)=5=>2b=5.6=30=>b=30:2=15
\(\dfrac{3c}{12}\)=5=>3c=5.12=60=>c=60:3=20
vậy a=10,b=15,c=20
chúc bạn hok tốt
bạn cứ đặt công thức gốc là k sau đó thay vào các câu là được thui
Câu 1:
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{a^2}{c^2}=\dfrac{b^2k^2}{d^2k^2}=\dfrac{b^2}{d^2}\)
\(\dfrac{2a^2+3b^2}{2c^2+3d^2}=\dfrac{2b^2k^2+3b^2}{2d^2k^2+3d^2}=\dfrac{b^2}{d^2}\)
=>\(\dfrac{a^2}{c^2}=\dfrac{2a^2+3b^2}{2c^2+3d^2}\)
b: \(\dfrac{2a-3c}{c}=\dfrac{2bk-3dk}{dk}=\dfrac{2b-3d}{d}\)
+ Ta có:
\(\frac{a}{2}=\frac{b}{-3}=\frac{c}{-4,5}.\)
Đặt \(\frac{a}{2}=\frac{b}{-3}=\frac{c}{-4,5}=k\Rightarrow\left\{{}\begin{matrix}a=2k\\b=-3k\\c=-4,5k\end{matrix}\right.\)
+ Lại có: \(P=\frac{3a-2b}{8a-b+3c}.\)
+ Thay \(a=2k;b=-3k\) và \(c=-4,5k\) vào P ta được:
\(P=\frac{3.2k-2.\left(-3k\right)}{8.2k-\left(-3k\right)+3.\left(-4,5k\right)}\)
\(\Rightarrow P=\frac{6k-\left(-6k\right)}{16k-\left(-3k\right)+\left(-13,5k\right)}\)
\(\Rightarrow P=\frac{6k+6k}{16k+3k-13,5k}\)
\(\Rightarrow P=\frac{12k}{5,5k}\)
\(\Rightarrow P=\frac{12}{5,5}\)
\(\Rightarrow P=\frac{24}{11}.\)
Vậy \(P=\frac{24}{11}.\)
Chúc bạn học tốt!
hỏi mỗi từng câu 1 thôi nhé ! Vậy mình giải cho . Mình k có ý kiếm GP + SP đâu . Nhưng nhìn 8 câu này hoa hết cả mắt :v
Đúng thật. Tớ nhìn cũng thấy ngán mà. Nhiều quá nên hơi nản
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
Ta có: \(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}\) và \(a-2b-3c=14\) \((*)\)
Áp dụng tính chất của dãy tỉ số bằng nhau và \((*)\), ta được:
\(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}=\dfrac{2\left(b-2\right)}{6}=\dfrac{3\left(c-3\right)}{12}\)
\(=\dfrac{\left(a-1\right)-2\left(b-2\right)-3\left(c-3\right)}{2-6-12}\)
\(=\dfrac{a-1-2b+4-3c+9}{-16}\)
\(=\dfrac{\left(a-2b-3c\right)+\left(-1+4+9\right)}{-16}\)
\(=\dfrac{14+12}{-16}=-\dfrac{13}{8}\)
Suy ra: \(\dfrac{a-1}{2}=\dfrac{-13}{8}\)
\(\Rightarrow8\left(a-1\right)=-13\cdot2\)
\(\Rightarrow8a-8=-26\)
\(\Rightarrow8a=-26+8\)
\(\Rightarrow8a=-18\Rightarrow a=-\dfrac{9}{4}\)