Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)
suy ra:\(a=b;b=c;c=d;d=a\)
\(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)
\(A=\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}\)
\(A=\dfrac{c+c+c+c}{c+c}=2\)
vậy giá trị của A là 2
Từ \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\Rightarrow\dfrac{1}{2}\cdot\dfrac{a}{b}=\dfrac{1}{2}\cdot\dfrac{b}{c}=\dfrac{1}{2}\cdot\dfrac{c}{d}=\dfrac{1}{2}\cdot\dfrac{d}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow a=b=c=d\)
Thay \(b=a;c=a;d=a\) vào biểu thức A ta có;
\(A=\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}\)
\(A=\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}\)
\(A=\dfrac{1}{2}\cdot4=2\)
Vậy \(A=2\)
B=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2012}}\)
=>3B=\(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2011}}\)
=>3B-B=2B=1-\(\dfrac{1}{3^{2012}}\)
=>B=\(\dfrac{1}{2}-\dfrac{1}{2.3^{20112}}\)<1/2
vậy........
\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)
( theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\cdot2b\\b=\dfrac{1}{2}\cdot2c\\c=\dfrac{1}{2}\cdot2d\\d=\dfrac{1}{2}\cdot2a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\)
\(\Rightarrow P=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}=2\)
\(\dfrac{x+4}{2009}+\dfrac{x+3}{2010}=\dfrac{x+2}{2011}+\dfrac{x+1}{2012}\)
\(\Rightarrow\left(\dfrac{x+4}{2009}+1\right)+\left(\dfrac{x+3}{2010}+1\right)=\left(\dfrac{x+2}{2011}+1\right)+\left(\dfrac{x+1}{2012}+1\right)\)
\(\Rightarrow\dfrac{x+2013}{2009}+\dfrac{x+2013}{2010}=\dfrac{x+2013}{2011}+\dfrac{x+2013}{2012}\)
\(\Rightarrow\dfrac{x+2013}{2009}+\dfrac{x+2013}{2010}-\dfrac{x+2013}{2011}-\dfrac{x+2013}{2012}=0\)
\(\Rightarrow\left(x+2013\right)\left(\dfrac{1}{2009}+\dfrac{1}{2010}-\dfrac{1}{2011}-\dfrac{1}{2012}\right)=0\)
Vì \(\dfrac{1}{2009}+\dfrac{1}{2010}-\dfrac{1}{2011}-\dfrac{1}{2012}\ne0\)
=> x +2013 = 0
=> x = -2013
\(\dfrac{x+4}{2009}+\dfrac{x+3}{2010}=\dfrac{x+2}{2011}+\dfrac{x+1}{2012}\)
\(\Leftrightarrow\dfrac{x+4}{2009}+1+\dfrac{x+3}{2010}+1=\dfrac{x+2}{2011}+1+\dfrac{x+1}{2012}+1\)
\(\Leftrightarrow\dfrac{x+2013}{2009}+\dfrac{x+2013}{2010}=\dfrac{x+2013}{2011}+\dfrac{x+2013}{2012}\)
\(\Leftrightarrow\dfrac{x+2013}{2009}+\dfrac{x+2013}{2010}-\dfrac{x+2013}{2011}-\dfrac{x+2013}{2012}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\dfrac{1}{2009}+\dfrac{1}{2010}-\dfrac{1}{2011}-\dfrac{1}{2012}\right)=0\)
\(\Leftrightarrow x+2013=0\).Do \(\dfrac{1}{2009}+\dfrac{1}{2010}-\dfrac{1}{2011}-\dfrac{1}{2012}\ne0\)
\(\Rightarrow x+2013=0\)
\(\Leftrightarrow x=-2013\)
a) Ta có:
\(-\dfrac{24}{35}< -\dfrac{24}{30}< -\dfrac{19}{30}\)
\(\Rightarrow x< y\)
b) Ta có:
\(A=\dfrac{2006}{2007}-\dfrac{2007}{2008}+\dfrac{2008}{2009}-\dfrac{2009}{2010}\)
\(A=\left(1-\dfrac{1}{2007}\right)-\left(1-\dfrac{1}{2008}\right)+\left(1-\dfrac{1}{2009}\right)-\left(1-\dfrac{1}{2010}\right)\)
\(A=1-\dfrac{1}{2007}-1+\dfrac{1}{2008}+1-\dfrac{1}{2009}-1+\dfrac{1}{2010}\)
\(A=-\dfrac{1}{2007}+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2010}\)
Ta lại có:
\(B=-\dfrac{1}{2006.2007}-\dfrac{1}{2008.2009}\)
\(B=-\dfrac{1}{2006}+\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\)
=> Dễ dàng thấy A > B
\(\dfrac{2010c-2011b}{2009}=\dfrac{2011a-2009c}{2010}=\dfrac{2009b-2010a}{2011}\)
Đặt: \(\left\{{}\begin{matrix}2009=x\\2010=y\\2011=z\end{matrix}\right.\) Ta có:
\(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}\)
\(\Leftrightarrow\dfrac{cxy-bxz}{x^2}=\dfrac{ayz-cxy}{y^2}=\dfrac{bxz-ayz}{z^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{cxy-bxz}{x^2}=\dfrac{ayz-cxy}{y^2}=\dfrac{bxz-ayz}{z^2}=\dfrac{cxy-bxz+ayz-cxy+bxz-ayz}{x^2+y^2+z^2}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}cy=bz\Leftrightarrow\dfrac{b}{y}=\dfrac{c}{z}\\az=cx\Leftrightarrow\dfrac{a}{x}=\dfrac{c}{z}\\bx=ay\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}\end{matrix}\right.\Leftrightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\Leftrightarrow\dfrac{a}{2009}=\dfrac{b}{2010}=\dfrac{c}{2011}\left(đpcm\right)\)