Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình hỏi : Một mảnh đất hình chữ nhật có nửa chu vi là 84m chiều rộng bằng 3/5 chiều dài.
a) tính diện tích mảnh vườn đó.
b) người ta dùng 30% diện tích để trồng hoa. hỏi diện tích vườn hoa là bao nhiêu.
Bài 1:
a) Xét tam giác ABM và tam giác ACM
có: AB = AC (gt)
góc BAM = góc CAM (gt)
AM là cạnh chung
\(\Rightarrow\Delta ABM=\Delta ACM\left(c-g-c\right)\)
b) Xét tam giác ABC
có: AB = AC
=> tam giác ABC cân tại A ( định lí tam giác cân)
mà AM là tia phân giác xuất phát từ đỉnh A ( M thuộc BC)
=> M là trung điểm của BC, AM vuông góc với BC ( tính chất đường phân giác, đường cao, đường trung trực, đường trung tuyến, đường cao xuất phát từ đỉnh tam giác cân)
Bài 2:
a) Xét tam giác ABD và tam giác EBD
có: AB = EB (gt)
góc ABD = góc EBD (gt)
BD là cạnh chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AD = ED ( 2 cạnh tương ứng)
c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> góc BAD = góc BED ( 2 góc tương ứng)
mà góc BAD = 90 độ ( tam giác ABC vuông tại A)
=> góc BED = 90 độ
1) đề có phải là: Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông AC và CE vuông AB. H là giao điểm của BD và CE.
a) Chứng minh Tam giác ABD = Tam giác ACE
b) Chứng minh tam giác AED cân
c, AH là đường trung trực của ED.
D) Trên tia đối DB lấy K sao cho DK = DB. Chứng minh góc ECB = Góc DKC
A B C D E H K
a) Xét tam giác ABD và tam giác ACE có:
\(\widehat{ACE}=\widehat{ABD}\left(cùngphuvoi\widehat{BAC}\right)\Rightarrow\Delta ABD=\Delta ACE\left(g.c.g\right)\hept{\begin{cases}AC=AB\left(\Delta ABCcântạiA\right)\\\widehat{BAC}chung\\\widehat{AEC}=\widehat{ADB}=90^o\end{cases}}\)
b) AE=AD(vì tam giác ABD=tam giác ACE
=> tam giác AED cân tại A
c) Xem lại đề
d) Xét tam giác BCK có:
\(\hept{\begin{cases}BK\perp DC\\BD=DK\end{cases}}\)
=> CD là đường trung trực của BK
=> BC=CK
=> tam giác BCK cân tại C
=>\(\widehat{CBK}=\widehat{CKB}\)
Mà \(\widehat{ECB}=\widehat{CBK}\)(vì góc ABC=góc ACB; góc ABD= góc ACE)
=> góc ECB= góc CKB
3) Đề là:
Cho góc xOy, vẽ tia phân giác Ot của góc xOy. Trên tia Ot lấy điểm M bất kì, trên tia Ox và Oy lần lượt lấy các điểm A và B sao cho OA = OB gọi H là giao điểm của AB và Ot . CHỨNG MINH:
a/ MA = MB
b/ OM là đường trung trực của AB
c/ Cho biết AB = 6cm; OA= 5cm. Tính OH ? (bn viết khó hiểu qá nên mk xem lại trong vở)
Tự vẽ hình!
a/ Xét tam giác OAM và tam giác OBM, có:
Cạnh OM là cạnh chung
OA = OB (gt)
góc AOM = góc BOM ( vì Ot là tia phân giác của góc xOy)
=> Tam giác OAM = tam giác OBM (c.g.c)
=> MA = MB ( 2 cạnh tương ứng)
b/ Ta có: MA = MB (cmt)
=> Tam giác AMB là tam giác cân
=> Góc MAH = góc MBH
Xét tam giác AMH và tam giác BMH, có:
góc MAH = góc MBH ( cmt)
MA = MB ( cmt)
góc AMH = góc BMH ( vì tam giác OAM = tam giác OBM)
=> tam giác AMH và tam giác BMH ( g.c.g)
=> AH = HB ( 2 cạnh tương ứng)
=> H là trung điểm của AB (1)
Vì tam giác AMH = tam giác BMH (cmt)
=>góc MHA = góc MHB ( 2 góc tương ứng)
mà góc MHA + góc MHB = 180 độ ( 2 góc kề bù)
=> góc MHA = góc MHB= 180 độ : 2 = 90 độ
=> MH vuông góc với AB (2)
Từ (1) và (2)
=> MH là đường trung trực của AB
=> OM là đường trung trực của AB ( vì H thuộc OM )
c/ Vì H là trung điểm của AB (cmt)
=> AH =HB = AB : 2 = 6 :2 = 3 (cm)
Xét tam giác OAH vuông tại H có: OA2 = OH2 + AH2 ( định lí Py-ta-go)
=> 52 = OH2 + 32
=> 25 = OH2 + 9
=> OH2 = 25 - 9
=> OH2 = 16
\(\Rightarrow OH=\sqrt{16}\)
\(\Rightarrow OH=4cm\)
a) Giải
Xét \(\Delta BAD\)và \(\Delta BMD\)có:
BD chung(gt)
AB = BC(gt)
\(\widehat{B_1}=\widehat{B_2}\)(BD là tia p/g của góc ABC)
=> tam giác BAD = tam giác BMD(cgc)
=> \(\widehat{A}=\widehat{M}\)(Hai góc tương ứng)
Mà \(\widehat{A}\)= \(90^o\)=> \(\widehat{M}=90^o\)
=>\(DM\perp BC\)
b)Xét \(\Delta DAK,\Delta DMC\)có:
\(\widehat{D_1}=\widehat{D_2}\)(đối đỉnh)
AD = DM (2 cạnh tương ứng)
góc A = góc M (cmt)
=> tam giác DAK = tam giác DMC(gcg)
=> AK = MC (2 cạnh t/ứ)
Ta có: AK + AB = BK
MC + BM = BC
Mà AK = MC (CMT)
AB = BM (CMT)
=>BK = BC
=> tam giác BCK là tam giác cân
Gợi ý:
1/ \(\Delta BAD=\Delta BMD\left(ch-cgv\right)\)
\(\Rightarrow\widehat{BAD}=\widehat{BMD}\left(goc.tuong.ung\right)=90^0\)
hay \(DM\perp BC\)
2/ Để CM 1 tam giác cân có 2 cách
- yếu tố cạnh
- yếu tố góc
Đối vs bài tập này cho đơn giải thì Cm góc nhé
Ta có: \(\Delta BAD=\Delta BMD\left(cau.1\right)\)
\(\Rightarrow AD=DM\)
>>> \(\Delta ADK=\Delta MDC\left(ch-gn\right)\)
\(\Rightarrow AK=MC\)
Cộng cạnh: \(AB+AK=BK\)
\(BM+MC=BC\)
\(\Rightarrow BK=BC\)
Vậy...