Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) trong tứ giác EDCB có 2 góc BEC = góc BDC = 90 cùng nhìn 1 cung chứa góc
nên EDCB là tứ giác nội tiếp => góc DEB + góc C = 180 , mà DEB + AED = 180 ( kề bù ) nên góc ACB=AED ( ĐPCM)
b) kéo dài AO tại H,Gọi K là giao điểm của AO và ED, vì B,H,C,A là các thuộc (O) tứ giác BHCA là tứ giác nội tiếp => góc ABC = góc AHC
cmtt như câu a) góc ADE = góc ABC
=> AHC =ADE => xét 2 tam giác đồng dạng AKD và AHC (g.g)
=> góc ACH = góc AKD . Mà ACH = 90 ( AH là đường kính , C thuộc (O) )
=> góc AKD = 90 => AO vuông tại ED ( đpcm)
a: góc B=90-40=50 độ
Xét ΔABC vuông tại A có \(AB=BC\cdot sin40^0=6.43\left(cm\right)\)
=>AC=7,66(cm)
b: \(BD\cdot EC\cdot BC\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AH}=AH^3\)
Cho ΔΔ ABC ⊥⊥ A, lấy các cạnh AB, AC làm cạnh huyền ta dựng về phía ngoài ΔΔ ABC các tam giác vuông ADB, AEC. M là trung điểm của cạnh huyền BC. DM cắt AB ở F và EM cắt AC ở K.
1) CM 3 điểm D,A,E thẳng hàng
2) CM : DM⊥⊥ AB , EM ⊥⊥ AC
3) CM : ΔΔ DME là ΔΔ vuông
4) CM : FK // BC , và FK = 1212 BC.
Mấy bn xem lại đề nha!
a) Dùng py-tago ta có thể tính đc BC=10cm
=> sinB=8/10=4/5
cosB=6/10=3/5
b) Ta có AEHF là hình vuông
=> AH=EF=\(\dfrac{AB\cdot AC}{BC}\)=4.8( TỈ SỐ LƯỢNG GIÁC)
c) Trong tam giác vuông AHB có,
AE*AB=AH^2 (1) (TỈ SỐ LƯỢNG GIÁC)
và trong tam giác vuông AHC, có
AF*AC=AH^2 (2)
tỪ (1) VÀ(2) suy ra AB*AE=AF*AC
Dễ dàng chúng minh được:
1,AHB ~ AEH (g.g) => AB.AE=AH2
2,AFH ~ AHC (g.g) => AF.AC=AH2
Do đó AB.AE=AC.AF