\(\Delta\)ABC vuông tại A, có AH là đường cao (AB<AC)

Chứng minh:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

ta có: góc BAH + góc HAC = 90 độ

góc HCA + góc HAC = 90 độ

=> góc BAH = HCA

xét Tg ABH và Tg CAH

góc BHA = AHC = 90

góc BAH = HCA (cmt)

=> Tg ABH đồng dạng với Tg CAH (g.g)

=> BH/AH = AH/CH
nhân chéo => AH2 = BH.CH

6 tháng 10 2017

mình xin lỗi vì đã quên nói nhưng bài này chưa được dùng tam giác đồng dạng

29 tháng 3 2018

a)  Xét   \(\Delta HAC\) và     \(\Delta MAH\)có:

\(\widehat{AHC}=\widehat{AMH}=90^0\)

\(\widehat{HAC}\)      CHUNG

suy ra:   \(\Delta HAC~\Delta MAH\)

\(\Rightarrow\)\(\frac{AH}{AM}=\frac{AC}{AH}\)\(\Rightarrow\)\(AH^2=AM.AC\)

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0
17 tháng 6 2021

A B C H I K

a, bạn tự làm nhé 

b, Xét tam giác ABH và tam giác CAH ta có 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAH )

Vậy tam giác ABH  ~ tam giác CAH ( g.g )

\(\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\Rightarrow AH^2=BH.CH\)

17 tháng 6 2021

c, mình làm hơi tắt nhé, bạn dùng tỉ lệ thức xác định tam giác đồng dạng nhé

Dễ có :  \(AH^2=AK.AC\)(1) 

\(AH^2=AI.AB\)(2)  

Từ (1) ; (2) suy ra : \(AK.AC=AI.AB\Rightarrow\frac{AK}{AB}=\frac{AI}{AC}\)

Xét tam giác AIK và tam giác ACB

^A _ chung 

\(\frac{AK}{AB}=\frac{AI}{AC}\)( cmt )

Vậy tam giác AIK ~ tam giác ACB ( c.g.c )

12 tháng 5 2018

a)  Xét  \(\Delta ABC\)và    \(\Delta HBA\)có:

         \(\widehat{B}\) chung

        \(\widehat{BAC}=\widehat{BHA}=90^0\)

suy ra:    \(\Delta ABC~\Delta HBA\)  (g.g)

b)  Xét   \(\Delta AIH\)và     \(\Delta AHB\)có:

        \(\widehat{AIH}=\widehat{AHB}=90^0\)

        \(\widehat{IAH}\)  chung

suy ra:    \(\Delta AIH~\Delta AHB\) (g.g)

\(\Rightarrow\)\(\frac{AI}{AH}=\frac{AH}{AB}\)  \(\Rightarrow\)  \(AI.AB=AH^2\)  (1)

Xét    \(\Delta AHK\)và     \(\Delta ACH\)có:

    \(\widehat{HAK}\)chung

   \(\widehat{AKH}=\widehat{AHC}=90^0\)

suy ra:   \(\Delta AHK~\Delta ACH\)  (g.g)

\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AK}{AH}\)

\(\Rightarrow\)\(AK.AC=AH^2\)    (2)

Từ (1) và (2) suy ra:    \(AI.AB=AK.AC\)

c)   \(S_{ABC}=\frac{1}{2}.AH.BC=20\)cm2

Tứ giác  \(HIAK\)có:     \(\widehat{HIA}=\widehat{IAK}=\widehat{AKH}=90^0\)

\(\Rightarrow\)\(HIAK\)là hình chữ nhật

\(\Rightarrow\)\(AH=IK=4\)cm

Ta có:   \(AI.AB=AK.AC\) (câu b)

 \(\Rightarrow\)\(\frac{AI}{AC}=\frac{AK}{AB}\)

Xét    \(\Delta AIK\)và    \(\Delta ACB\)có:

    \(\widehat{IAK}\)chung

   \(\frac{AI}{AC}=\frac{AK}{AB}\) (cmt)

suy ra:   \(\Delta AIK~\Delta ACB\)  (c.g.c)

\(\Rightarrow\)\(\frac{S_{AIK}}{S_{ACB}}=\left(\frac{IK}{BC}\right)^2=\frac{4}{25}\)

\(\Rightarrow\)\(S_{AIK}=\frac{4}{25}.S_{ACB}=3,2\)cm2