\(\Delta\)ABC vuông cân tại A. Kẻ tia phân giác của góc A cắt BC tại H. Trên tia AB,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

a)+) Ta có

AB = AC (do ∆ABC cân tại A )

BN = CM (gt)

=> AB - BN = AC - AM

=> AN = CM

+) Lại có ABC = ACB = 45° ( do ∆ ABC vuông cân tại A)

BAH = CAH = BAC /2 = 90°/2= 45° ( do AH là pg BAC)

=> ABC = BAH = ACB = CAH = 45°

=> ∆ ABH cân tại H và ∆ ACH cân tại H

=> HA= HB , HA = HC

+) Xét ∆ NAH và ∆ MCH có

NA = MC (cmt)

NAH = MCH (= 45°)

AH = CH (cmt)

=> ∆NAH = ∆MCH (c.g.c)

b)+) Xét ∆ AHM và ∆BHN có

AH = BH (cmt)

HAC = HAB =45°

AM = BN (gt)

=> ∆AHM = ∆BHN (c.g.c)

=> HM = HN (1) (2cạnh t/ứ)

Và AHM = BHN (2) (2góc t/ứ)

c) +) Xét ∆ABH và ∆ACH có

AB = AC (do ∆ ABC cân tại A)

HAB = HAC (do AH là pg BAC)

AH : cạnh chung

=> ∆AHB = ∆ AHC (c.g.c)

=> AHB = AHC (2góc t/ứ )

Mà AHB + AHC = 180° (kề bù )

=> AHB = AHC = 90°

Hay AHN + NHB = AHB = 90° (3)

Từ (2) và (3) => NHA + AHN = 90°

=> NHM = 90° (4)

Từ (1) và (4) => ∆ NHM vuông cân

Bài dài wá

a) Ta có: ΔABC vuông cân tại A(gt)

⇒AB=AC và \(\widehat{B}=\widehat{C}=45^0\)(số đo của các cạnh và các góc trong ΔABC vuông cân tại A)

\(\widehat{CAH}=\widehat{BAH}=\frac{\widehat{BAC}}{2}=\frac{90^0}{2}=45^0\)(AH là tia phân giác của \(\widehat{BAC}\))

nên \(\widehat{B}=\widehat{C}=\widehat{CAH}=\widehat{BAH}\)

Ta có: AN+NB=AB(N nằm giữa A và B)

AM+CM=AC(M nằm giữa A và C)

mà AB=AC(cmt)

và AM=NB(gt)

nên AN=CM

Ta có: ΔABC vuông cân tại A(gt)

mà AH là đường phân giác ứng với cạnh đáy BC(gt)

nên AH cũng là đường trung tuyến, đường cao ứng với cạnh BC(định lí tam giác cân)

⇒H là trung điểm của BC

Ta có: ΔABC vuông cân tại A(gt)

mà AH là đường trung tuyến ứng với cạnh huyền BC(cmt)

nên \(AH=\frac{BC}{2}\)(định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

\(CH=HB=\frac{BC}{2}\)(H là trung điểm của BC)

nên AH=CH=BH

Xét ΔAHN và ΔCHM có

AN=CM(cmt)

\(\widehat{HAN}=\widehat{C}\)(\(\widehat{HAB}=\widehat{C}\), N∈AB)

AH=CH(cmt)

Do đó: ΔAHN=ΔCHM(c-g-c)

b) Ta có: ΔAHN=ΔCHM(cmt)

⇒HN=MH(hai cạnh tương ứng)

Xét ΔAHM và ΔBHN có

HM=HN(cmt)

AM=BN(gt)

AH=BH(cmt)

Do đó: ΔAHM=ΔBHN(c-c-c)

1 tháng 4 2020

câu này thì em ko biết vì em mới học lớp6

A B C H N M

Bài làm

a) Vì tam giác ABC vuông cân ở A

Mà AH là phân giác

=> AH là trung tuyến.

=> AH = BH = HC

=> Tam giác AHC cân tại H

=> AH = HC

=> \(\widehat{HAC}=\widehat{HCA}\)

Mà \(\widehat{HAB}=\widehat{HAC}\)( Do AH phân giác )

=> \(\widehat{HCA}=\widehat{HAB}\)

Ta có: AN + NB = AB

AM + MC = AC

mà AB = AC, BN = AM

=> AN = MC

Xét tam giác AHN và tam giác CHM có:

AN = MC ( cmt )

\(\widehat{HCA}=\widehat{HAB}\)( cmt )

AH = HC ( cmt )

=> Tam giác AHN = tam giác CHM ( c.g.c)

b) Vì tam giác AHN = tam giác CHM ( cmt )

=> NH = HM 

Vì AH trung tuyến

=> BH = HC 

Xét tam giác AHM và tam giác NHB có:

NH = HM ( cmt )

BN = AM ( gt )

HB = HC ( cmt )

=> Tam giác AHM = tam giác NHB ( c.c.c )

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

12 tháng 1 2020

a) Do tam giác ABC vuông tại A 

=> Theo định lý py-ta-go ta có

BC^2=AB^2+AC^2

=>BC=\(\sqrt{AB^2+AC^2}\)\(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15

Vậy cạnh BC dài 15 cm

b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có

BE là cạnh chung

AB=BD(Giả thiết)

=>Tam giác ABE=Tam giác DBE(CGV-CH)

12 tháng 1 2020

B A C H D E K M

 GT 

 △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm

 D \in BC : BD = BA.

 DK ⊥ BC (K \in AB , DK ∩ AC = { E }

 AH ⊥ BC , AH ∩ BE = { M }

 KL

 a, BC = ?

 b, △ABE = △DBE ; BE là phân giác ABC

 c, △AME cân

Bài giải:

a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)

b, Xét △ABE vuông tại A và △DBE vuông tại D

Có: AB = BD (gt)

    BE là cạnh chung

=> △ABE = △DBE (ch-cgv)

=> ABE = DBE (2 góc tương ứng)

Mà BE nằm giữa BA, BD

=> BE là phân giác ABD

Hay BE là phân giác ABC

c, Vì △ABE = △DBE (cmt)

=> AEB = DEB (2 góc tương ứng)

Vì DK ⊥ BC (gt)

    AH ⊥ BC (gt)

=> DK // AH (từ vuông góc đến song song)

=> AME = MED (2 góc so le trong)

Mà MED = MEA (cmt)

=> AME = MEA 

=> △AME cân

26 tháng 4 2017

B A C D E F

a)Xét \(\Delta ABD\) và \(\Delta EDB\)có:

\(\widehat{BAD}=\widehat{BED}\left(=90\right);\widehat{ABD}=\widehat{EBD}\)và BD chung

\(\Rightarrow\Delta ABD=\Delta EDB\)(cạnh huyền - góc nhọn)

b) Từ câu a  => AD = EB(2 cạnh tương ứng)

\(\Rightarrow\Delta ADF=\Delta FDC\left(g-c-g\right)\)(Bạn tự CM nha)

=> DF = DC (2 cạnh tương ứng)

=> \(\Delta FDC\)cân tại D

26 tháng 4 2017

Câu b mình có cách khác nhưng chả biết bạn học tới chưa. Thôi cứ tham khảo nhé chứ cách bạn kia ngắn gọn lắm rồi

Cách mình chứng minh góc DFC = góc FCD

Xét tam giác ABC có 2 đường cao FE;AC cắt nhau tại D

=> D là trực tâm tam giác ABC

=> BD là đường cao thứ 3

=> BD vuông góc FC tại D

Xét tam giác BFC có BD vừa là phân giác vừa là đường cao

=> tam giác BFC cân tại B

=> góc BFC = góc BCF

Vì tam giác ABD = tam giác EDB => AD = DE (hai cạnh tương ứng)

Xét tam giác ADF và tam giác DEC có:

  góc ADF = góc EDC (đối đỉnh)

  góc DAF = góc DEC = 90 độ (gt)

  AD = DE (cmt)

=> tam giác ADF = tam giác EDC (g.c.g)

=> góc AFD = góc DCE (hai góc t.ứng)

Mà: góc BFC = góc BCF

=> góc DFC = góc DCF 

=> tam giác FDC cân tại F

Xong!! =)))

Bài 1:Cho góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Trên tia Ax lấy điểm C,trên tia By lấy điểm D sao cho AC=BDa) Chứng minh:AD=BCb) Gọi E là giao điểm AD và Bc.Chứng minh:\(\Delta EAC=\Delta EBD\)c) Chứng minh:OE là phân giác của góc xOyBài 2:Cho \(\Delta ABC\)có \(\widehat{A}=90^o\).Kẻ AH vuông góc với BC \(\left(H\varepsilon BC\right)\).Trên đường thẳng vuông góc với BC tại B lấy điểm D...
Đọc tiếp

Bài 1:

Cho góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Trên tia Ax lấy điểm C,trên tia By lấy điểm D sao cho AC=BD

a) Chứng minh:AD=BC

b) Gọi E là giao điểm AD và Bc.Chứng minh:\(\Delta EAC=\Delta EBD\)

c) Chứng minh:OE là phân giác của góc xOy

Bài 2:

Cho \(\Delta ABC\)có \(\widehat{A}=90^o\).Kẻ AH vuông góc với BC \(\left(H\varepsilon BC\right)\).Trên đường thẳng vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao  cho BD=AH

Chứng minh rằng:

a) \(\Delta AHB=\Delta DBH\)

b) AB//DH

c) Tính \(\widehat{ACB}\),biết \(\widehat{BAH=35^o}\)

Bài 3:

Cho \(\overline{\Delta}ABC\) vuông tại A có \(\overline{\Delta}B=30^o\)

a) Tính \(\Delta C\)

b) Vẽ tia phân giác của góc C cắt cạnh AB tại D

c) Trên cạnh CB lấy điểm M sao cho CM=CA.Chứng minh \(\Delta ACD=\Delta MCD\)

d) Qua C vẽ đường thẳng xy vuông góc CA.Từ A kẻ đường thẳng song song với CD cắt xy ở K.Chứng minh:AK=CD

e) Tính \(\DeltaẠKC\)

Bài 4:

Cho tam giác ABC vuông tại A,có AB=AC.Gọi K là trung điểm của cạnh BC

a) Chứng minh \(\Delta AKB=\Delta AKC\)và \(AK⊥BC\)

b) Từ C kẻ đường vuông góc với BC,nó cắt AB tại E.Chứng minh EC//AK

c) Chứng minh CE=CB

0

a: Xet ΔAHB vuông tại H co góc HBA=45 độ

nên ΔAHB vuông cân tại H

b: Xet ΔAHM và ΔBHN có

AH=BH

góc HAM=góc HBN

AM=BN

=>ΔAHM=ΔBHN

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm