Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
B A C H D E K M
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
A B C H N M
Bài làm
a) Vì tam giác ABC vuông cân ở A
Mà AH là phân giác
=> AH là trung tuyến.
=> AH = BH = HC
=> Tam giác AHC cân tại H
=> AH = HC
=> \(\widehat{HAC}=\widehat{HCA}\)
Mà \(\widehat{HAB}=\widehat{HAC}\)( Do AH phân giác )
=> \(\widehat{HCA}=\widehat{HAB}\)
Ta có: AN + NB = AB
AM + MC = AC
mà AB = AC, BN = AM
=> AN = MC
Xét tam giác AHN và tam giác CHM có:
AN = MC ( cmt )
\(\widehat{HCA}=\widehat{HAB}\)( cmt )
AH = HC ( cmt )
=> Tam giác AHN = tam giác CHM ( c.g.c)
b) Vì tam giác AHN = tam giác CHM ( cmt )
=> NH = HM
Vì AH trung tuyến
=> BH = HC
Xét tam giác AHM và tam giác NHB có:
NH = HM ( cmt )
BN = AM ( gt )
HB = HC ( cmt )
=> Tam giác AHM = tam giác NHB ( c.c.c )