Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\widehat{ACB}=90^0-50^0=40^0\)
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: DC=AB và DC//AB
c: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=BC/2
A B C D M
a)Xét ΔAMB và ΔDMC có:
AD=DM(gt)
\(\widehat{AMB}=\widehat{MDC}\left(đđ\right)\)
BM=MC(gt)
=> ΔAMB=ΔDMC (c.g.c)
b) Vì: ΔAMB=ΔDMC(cmt)
=> \(\widehat{ABM}=\widehat{MCD}\) . Mà hai góc này ở vị trí sole trong
=> AB//DC
Mà: \(AB\perp AC\left(gt\right)\)
=> \(DC\perp AC\)
c)Vì: ΔABC vuông tại A(gt)
Mà AM là đường trung tuyến ứng vs cạnh BC
=> \(AM=\frac{1}{2}BC\)
a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )
Gọi giao điểm của AB và CD là K
Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)
\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)
\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)
Gọi J là trung điểm DM
C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)
rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)
Thiếu đề! Với dữ kiện vậy chỉ chứng minh đc ^A = 90 độ còn ^B chưa thể tính đc.
Sao ko vẽ hình được vậy ?
Thêm đề là tam giác ABC cân tại A
Xét tam giác ABM và tam giác ACM có
BM=CM (gt)
AB=AC (gt)
AM cạnh chung
=> tam giác ABM = tam giác ACM (c-c-c)
=> AMC^ = AMB^ ( Góc tương ứng ) (1)
Mà AMC^+AMB^=BMC^=180* (Góc bẹt) (2)
Từ 1 và 2 => AMB^=AMC^=180*/2=90*
Theo giả thiết ta có : AM=BC/2 <=> AM^2 = BC^2/2
Áp dụng ĐL pitago cho tam giác ABM vuông tại M có :
AM^2 + MB^2 = BC^2
Mà : AM^2 = 1/2 BC^2 (3)
=> MB^2 = 1/2 BC^2 (4)
Từ 3 và 4 => AM^2 = MB^2 <=> AM = MB (do AM ; MB > 0)
P/s : e mới lớp 6 nên giải sai thông cảm ạ