Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HÌNH BẠN TỰ VẼ NHA !!!
a. Tam giác ABC cân tại A => Ab = AC
Xét tam giác ABH và tam giác ACK có :
AB = AC
góc A chung
góc AHB = AKC = 90 độ
=> tam giác ABH = tam giác ACK ( cạnh huyền - góc nhọn )
=> BH = CK
b. Xét tam giác CBK và tam giác BCH có :
BH = CK
BC chung
góc CKB = BHC = 90 độ
=> tam giác CBK = tam giác BCH ( cạnh huyền - cạnh góc vuông )
a) xét tam giác AHB và tam giác AHC
có AH là cạnh chung
AB = AC (gt)
BH = CH ( H là trung điểm của BC )
=> tam giác ABH = tam giác ACH ( c-g-c )
=> góc BAH = góc CAH ( 2 góc tương ứng)
b) tam giác AEH vuông tại E
=> góc EAH + góc EHA = 90 độ ( 2 góc nhọn phụ nhau )
tam giác AFH vuông tại F
=>góc FAH + góc FHA = 90 độ (2 góc nhọn phụ nhau)
mà gócEAH = góc FAH ( 2 góc tương ứng của tam giác BAH = tam giác CAH)
=> góc AHE = góc AHF
xét tam giác AHE và tam giác AHF
có góc EAH = góc FAH ( cm câu a)
AH là cạnh chung
góc AHE = góc AHF ( cm trên )
=> tam giác AHE = tam giác AHF (g-c-g )
=>AE= AF (2 cạnh tương ứng )
=> tam giác AEF cân tại A
c) có BC= 6 cm
mà có H là trung điểm của BC
=> BH = CH = 3cm
xét tam giác ABH vuông tại H
=>AH^2 + BH^2 = AB^2 ( định lý py-ta-go )
=>AH^2 = AB^2 - BH^2
AH^2 = 5^2 - 3^2 (vì AB = 5 cm; BH = 3 cm )
AH^2 = 16
AH= 4 (cm)
A B C E F H 1 2
a) Xét hai tam giác vuông AHB và AHC có:
AB = AC (do \(\Delta ABC\) cân tại A)
HB = HC (gt)
AH: cạnh chung
Vậy: \(\Delta AHB=\Delta AHC\left(c-c-c\right)\)
b) Xét hai tam giác vuông AEH và AFH có:
\(\widehat{A_1}=\widehat{A_2}\) (\(\Delta AHB=\Delta AHC\))
AH: cạnh huyền chung
Vậy: \(\Delta AEH=\Delta AFH\left(ch-gn\right)\)
Suy ra: AE = AF (hai cạnh tương ứng)
Do đó: \(\Delta AHF\) cân tại A
c) Vì H là trung điểm của BC
=> AH là đường trung tuyến của \(\Delta ABC\)
\(\Delta ABC\) cân tại A có AM là đường trung tuyến đồng thời là đường cao
Ta có: HB = HC = \(\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
\(\Delta ABH\) vuông tại H, theo định lí Py-ta-go
Ta có: \(AB^2=AH^2+HB^2\)
\(\Rightarrow AH^2=AB^2-HB^2\)
\(AH^2=5^2-3^2\)
\(AH^2=16\)
\(\Rightarrow AH=\sqrt{16}=4\left(cm\right)\)
A B C H K a,\(\Delta ABC\) cân tại A => \(\widehat{B}=\widehat{C}\)
Xét \(\Delta ABM\) và \(\Delta ACM\) có :
AB=AC (gt)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra: \(\Delta ABM\) = \(\Delta ACM\)(c.g.c)
b,Xét \(\Delta\)HMB và \(\Delta\)KMC có:
\(\widehat{H}=\widehat{K}\left(=90^o\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
BM=MC(gt)
Suy ra : \(\Delta\)HMB = \(\Delta\)KMC(ch-gn)
=>BH = CK (2 cạnh tương ứng)
a) Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( tam giác ABC cân tại A )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch - cgv )
b) Từ tam giác vuông AHB = tam giác vuông AHC
=> ^BAH = ^CAH ( hai góc tương ứng )
Xét tam giác vuông AHE và tam giác vuông AHF có :
AH chung
^BAH = ^CAH ( cmt )
=> tam giác vuông AHE = tam giác vuông AHF ( ch - gn )
=> HE = HF ( hai cạnh tương ứng )
a) Vì góc BHC = góc KMH = 90 độ
=> MK // AC
Nên góc C = góc KMB, mà góc C = góc B => góc B= góc KMB
Xét :ΔBKM và ΔMDB ta có
+ góc DBM=góc KMB ( vừa chứng minh )
+ BM là cạnh chung
=> ΔBKM=ΔMDB ( ch-gn )
b) Vì góc KHE= góc MEH = 90 độ
=> ME//BH
nên góc KHM= góc EMH (cặp góc so le trong)
Xét: ΔKHM và ΔEHM ta có
+ góc KHM = góc EMH ( vừa chứng minh )
+ MH là cạnh chung
=> ΔKHM=ΔEHM (ch-gn )
c) vì ΔBKM=ΔMDB => DM=BK
ΔKHM=ΔEHM => KH=ME
ta có DM + ME = BK + KH
=> DM + ME = BH
chúc bạn học tốt. nhớ tick cho mk nha
Ta có BH\(\perp\)AC
B'H'\(\perp\)A'C'
AB=A'B' ; AC=A'C'
từ trên suy ra BC=B'C'