Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó:ABCD là hình bình hành
b: Xét tứ giác AEBC có
N là trung điểm của AB
N là trung điểm của CE
Do đó:AEBC là hình bình hành
SUy ra: AE//BC và AE=BC
=>AE=AD
Ta có: AE//BC
AD//BC
mà AE,AD có điểm chung là A
nên A,E,D thẳng hàng
mà AD=AE
nên A là trung điểm của DE
a) Tính MN:
Xét tam giác ABC ta có:
M là trung điểm AC (gt); N là trung điểm BC (gt)
=>MN là đường trung bình của tam giác ABC
=> MN // BC; MN=BC/2
=>MN= 12/2=6
b) Tính diện tích tam giác ABC:
Xét tam giác ABC vuông tại A ta có:
AB2+AC2=BC2 (định lý Pytagor thuận)
122+AC2=202
144+AC2=400
AC2=400-144=256
AC=16
Diện tích tam giác ABC là:
S tam giác ABC= AB*AC=12*16=192
c) CMR: tứ giác ABCD là hình bình hành:
Xét tứ giác ABCD ta có:
M là trung điểm của AC (gt)
M là trung điểm của BD (gt)
AC cắt BD tại M
=> tứ giác ABCD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
d) CM: tứ giác ABEC là hình chữ nhật:
Ta có :
CD=AB ( ABCD là hình bình hành)
CD=CE (gt)
=>CE=AB
Xét tứ giác ABEC ta có:
AB=CE (cmt)
AB//CE (AB//CD; C thuộc DE)
=>tứ giác ABEC là hình bình hành ( tứ giác có một cặp cạnh đối vừa song song vừa bằng nhau)
mà góc BAC= 900 (tam giác ABC vuông tại A)
=.>hình bình hành ABEC là hình chữ nhật (tứ giác là hình bình hành có một góc vuông)
a: Sửa đề: ΔABC cân tại A
Xét ΔABM và ΔACN có
AB=AC
góc BAM chung
AM=AN
=>ΔABM=ΔACN
=>BM=CN
Xét ΔACB có
BM,Cn là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2/3BM và CG=2/3CN
mà BM=CN
nên BG=CG
b: BG=2/3BM
=>BG=2GM
=>BG=GD
=>G là trung điểm của BD và BD=2BG
CG=2/3CN
=>CG=2GN
=>CG=GE
=>G là trung điểm của CE và CE=2CG
CE=2CG
BD=2BG
mà CG=BG
nên CE=BD
Xét tứ giác BCDE có
G là trung điểm chung của BD và CE
CE=BD
=>BCDE là hình chữ nhật
a,Xét tứ giác CPBM có:
BC giao MP tại N
mà N là trung điểm BC(gt)
N là trung điểm mp(P đx M qua N)
=>Tứ giác CPBM là hình bình hành(dhnb hbh)
b,Theo cma,CPBM là hình bình hành=>PC//MB và PC=MP
mà M là trung điểm AB
=>PC//MA và PC=MA
=>MPCA là hình bình hành(dhnb hbh)
mà\(\widehat{MAC}=90^o\)(\(\Delta ABC\)vuông tại A)
=>MPCA là hình chữ nhật(dhnb hcn)
c,Vì CPBM là hình bình hành(cma)=>BP=CM(t/c)(1)
Vì MPCA là hình chữ nhật(cmb)=>AP=CM (t/c)(2)
Từ (1) và (2)=>PB=PA
=>\(\Delta BPA\)cân tại P
C K A B N H M 1 1
Xét \(\Delta AMK=\Delta CMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{K_1}=\widehat{B_1}\)
Mà 2 góc ở vị trí so le trong
\(\Rightarrow AK\)// \(BC\)( 1 )
Và AK = BC ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow ABCK\)là hình bình hành ( đpcm )
b, Bạn xem lại đề bài