Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ò đợi 6h tối nay sẽ có lời giải nhá :)) Phương đi học đây
hình tự vẽ nha
Xét tam giác ABE có AB = AE => tam giác ABE cân tại A
mà góc A = 60độ => tam giác ABE là tam giác đều
=> AE = AB = BE và góc ABE = 60độ
Ta cũng có góc CBD = 60độ => góc ABE = góc CBD (1)
Ta có :
+) góc ABE = góc ABD + góc EBD (2)
+) góc CBD = góc CBE + góc EBD (3)
Từ (1)(2)(3) => góc ABD = góc CBE
Xét tam giác BAD và tam giác BEC có :
BD = BC ( gt )
góc ABD = góc CBE ( cmt )
AB = BE ( cmt )
=> tam giác BAD = tam giác BEC ( c-g-c )
=> đpcm
Hình vẽ
O B A C 1 2 1 2
Ta có: Góc A = 180 độ - (Góc B lớn + Góc C lớn)
Góc BOC = 180 độ - (Góc B2 + C2)
Ta có B1 + B2 = B => B1, B2 < B
C1 + C2 = C => C1, C2 < C
=> Góc BOC < góc A
Lí do: Khi một số trừ cho 1 số mà nó càng lớn thì hiệu càng nhỏ <=> Khi một số trừ cho 1 số mà nó càng nhỏ thì hiệu càng lớn
\(\widehat{BOC}=180^0-\left(\widehat{OBC}+\widehat{OCB}\right)\)
\(=180^0-\left(\widehat{ABC}-\widehat{ABO}+\widehat{ACB}-\widehat{ACO}\right)\)
\(=180^0-\left(180^0-\widehat{BAC}-\widehat{ABO}-\widehat{ACO}\right)\)
\(=\widehat{BAC}+\widehat{ABO}+\widehat{ACO}\)
B1 :
Cách 1 :
Xét \(\Delta NMB\)và \(\Delta NMC\)có :
NB = NC ( gt )
NM là cạnh chung
MB = MC ( do M là trung điểm của BC )
nên \(\Delta NMB=\Delta NMC\left(c.c.c\right)\)
Cách 2 :
Do NB = NC => tam giác NBC cân tại N => \(\widehat{NBM}=\widehat{NCM}\)
Xét \(\Delta NMB\)và \(\Delta NMC\)có :
NB = NC ( gt )
\(\widehat{NBM}=\widehat{NCM}\)( CMT )
MB = MC ( do M là trung điểm của BC )
nên \(\Delta NMB=\Delta NMC\left(c.g.c\right)\)
Cách còn lại tự làm nhá
B2 :
Cách 1 :
\(\Delta ABC\)có AB = AC => \(\Delta ABC\)cân tại A => \(\widehat{B}=\widehat{C}\)
AE là tia p/g của \(\widehat{BAC}\) => \(\widehat{BAE}=\widehat{CAE}\)
Xét \(\Delta ABE\)và \(\Delta ACE\)có :
AC = AB ( gt )
\(\widehat{BAE}=\widehat{CAE}\) ( CMT )
AE là cạnh chung
nên \(\Delta ABE=\Delta ACE\)\(\left(c.g.c\right)\)
Cách 2 :
Xét \(\Delta ABE\)và \(\Delta ACE\)có :
\(\widehat{BAE}=\widehat{CAE}\)( AE là tia p/g của BAC )
AB = AC ( gt )
\(\widehat{B}=\widehat{C}\)( do tam giác ABC cân tại A )
nên \(\Delta ABE=\Delta ACE\left(g.c.g\right)\)