Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABE và ΔHBE, có:
góc BAE = góc BHE = 90o (gt)
BE: chung
góc ABE = góc HBE ( BE là tia phân giác của góc ABC)
Vậy ΔABE = ΔHBE ( Cạnh huyền - góc nhọn)
b) Ta có: ΔABE = ΔHBE (cm câu a)
=> AB = HB ( 2 cạnh t/ư)
Vậy ΔABH là tam giác cân
c)Ta có: ΔABH cân tại B (cm câu b)
=> góc BAH = góc BHA ( 2 góc đáy của tam giác cân)
Mà: góc BAH = 65o (gt)
=> góc BHA = 65o
Do đó: góc ABH = 50o
Trong ΔABC, có:
góc A + góc B + góc C = 180o ( T/c tổng 3 góc của 1 tam giác)
Hay: 90o + 50o + góc C = 180o
góc C = 180o - 90o - 50o
=> góc C = 40o
Hay góc ACB = 40o (đpcm)
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) vuông \(ABE\) và \(HBE\) có:
\(\widehat{BAE}=\widehat{BHE}=90^0\)
\(\widehat{ABE}=\widehat{HBE}\) (vì \(BE\) là tia phân giác của \(\widehat{B}\))
Cạnh BE chung
=> \(\Delta ABE=\Delta HBE\) (cạnh huyền - góc nhọn)
b) Theo câu a) ta có \(\Delta ABE=\Delta HBE.\)
=> \(AB=HB\) (2 cạnh tương ứng)
=> \(\Delta ABH\) cân tại \(B.\)
Chúc bạn học tốt!
Ta có hình vẽ:
O A B D C m n
a) Vì góc AOB và AOD là 2 góc kề bù nên OB và OD là 2 tia đối nhau (1)
Vì góc AOB và BOC là 2 góc kề bù nên OA và OC là 2 tia đối nhau (2)
Từ (1) và (2) => BOC và AOD là 2 góc đối đỉnh (đpcm)
b) Gọi Om, On lần lượt là tia phân giác của AOD và BOC
\(\Rightarrow\begin{cases}AOm=mOD=\frac{AOD}{2}\\BOn=nOC=\frac{BOC}{2}\end{cases}\)
Mà AOD = BOC (đối đỉnh)
Do đó, \(AOm=mOD=BOn=nOC\)
Lại có: AOD + AOB = 180o (kề bù)
=> DOm + mOA + AOB = 180o
=> BOn + mOA + AOB = 180o
Mà BOn, mOA, AOb là các góc tương ứng kề nhau và không có điểm trong chung nên mOn = 180o hay Om và On là 2 tia đối nhau (đpcm)
Ta có:
A+B+C=180o(tổng 3 góc trong 1 tam giác)
\(\rightarrow\)C+C=180o
\(\rightarrow\)C=90o=A+B
Lại có:
2A=3B\(\Rightarrow\)B=\(\frac{2}{3}\)A
\(\Rightarrow\)A+B=90o
\(\Rightarrow\)\(\frac{2}{3}\)A+A=90o
\(\Rightarrow\)A\(\times\)(\(\frac{2}{3}\)+1)=90o
\(\Rightarrow\)A\(\times\)\(\frac{5}{3}\)=90o
\(\Rightarrow\)A=54o
Vậy A=54o
Học tốt
Bạn tham khảo ở đây:
Câu hỏi của Nguyễn Khánh Ngân - Toán lớp 7 - Học toán với OnlineMath
Link nek:
Câu hỏi của Nguyễn Khánh Ngân - Toán lớp 7 - Học toán với OnlineMath
Bn tham khảo ở đây nha
~ Rất vui vì giúp đc bn ~