Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình:
A E C B H D K
Giải:
a) Xét tam giác ABD và tam giác ACE, có:
\(\widehat{A}\) chung
\(\widehat{ADB}=\widehat{AEC}=90^0\)
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\)
\(\Rightarrow BD=CE\) (Hai cạnh tương ứng)
b) Vì \(\Delta ABD=\Delta ACE\) (câu a)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) (Hai góc tương ứng)
Có: \(\widehat{ABC}=\widehat{ACB}\left(gt\right)\)
Lấy vế trừ vế, ta được:
\(\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\)
\(\Leftrightarrow\widehat{HBC}=\widehat{HCB}\)
\(\Leftrightarrow\Delta BHC\) cân tại H
c) Xét tam giác ABC, có:
BD là đường cao thứ nhất của tam giác ABC
CE là đường cao thứ hai của tam giác ABC
Mà BD và CE cắt nhau ở H
Suy ra H là trực tâm của tam giác ABC
\(\Rightarrow\) AH là đường cao thứ ba của tam giác ABC
Mà tam giác ABC cân tại A
=> AH đồng thời là đường trung trực của tam giác ABC
=> AH là đường trung trực của BC
d) Xét tam giác BKC, có:
CD là đường cao đồng thời là đường trung tuyến của tam giác BKC
=> Tam giác BKC cân tại C
\(\Leftrightarrow\widehat{CBK}=\widehat{BKC}\)
Hay \(\widehat{CBH}=\widehat{DKC}\) (1)
Lại có: \(\widehat{CBH}=\widehat{HCB}\) (Tam giác HBC cân tại H)
Hay \(\widehat{CBH}=\widehat{ECB}\) (2)
Từ (1) và (2) => \(\widehat{ECB}=\widehat{DKC}\)
Vậy ...
a) xét \(\Delta EBC\) và \(\Delta\)DCB
\(\widehat{BEC}\) =\(\widehat{CDB}\) =90o
BC chung
\(\widehat{EBC}\) = \(\widehat{DCB}\) ( \(\Delta\) ABC cân tại A)
=>\(\Delta\) vuông EBC = \(\Delta\)vuông DCB ( cạnh huyền -góc nhọn )
=> BD=CE ( 2 cạnh tương ứng)
b) \(\Delta EBC=\Delta DCB\left(cmt\right)\)
=> \(\widehat{ECB}=\widehat{DBC}\) ( 2 góc tương ứng )
\(\Delta HBC\) có \(\widehat{HBC}=\widehat{HCB}\) ( cmt)
=> \(\Delta HBC\) cân tại H
c) H là giao điểm của 2 đường cao BD và CE
=> H là trực tâm của \(\Delta ABC\)
=> AH là đường cao của BC
và \(\Delta ABC\) cân tại A
=> AH là trung trực của BC ( Tính chất tam giác cân )
d) D là trung điểm của BK
=> BD=KD mà BD=CE (cmt)
=> CE=KD
XÉT \(\Delta KDC\) và \(\Delta CEB\)
KD=CE( cmt)
\(\widehat{CEB}\) =\(\widehat{KDC}\) \(=90^o\)
BE=CD( \(\Delta EBC=\Delta DCB\) )
=>\(\Delta KDC=\Delta CEB\left(c.g.c\right)\)
=>\(\widehat{ECB}=\widehat{DKC}\) ( 2 góc tương ứng )
a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có
BM chung
\(\widehat{ABM}=\widehat{HBM}\)
Do đó: ΔBAM=ΔBHM
b: Tacó: BA=BH
MA=MH
Do đó: BM là đừog trung trực của AH
a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có
BM chung
\(\widehat{ABM}=\widehat{HBM}\)
Do đó: ΔABM=ΔHBM
b: Ta có: BA=BH
MA=MH
Do đó: BM là đường trung trực của AH
Bài làm
a) Xét tam giác ABM có:
MK là đường trung trực
=> MB = MA ( tính chất đường trung trực )
=> Tam giác ABM cân tại M
b) Vì MK vuông góc AB
CB vuông góc AB
=> MK // CB
=> ^AMK = ^MCB ( đồng vị ). (1)
Vì tam giác ABM cân tại M
Mà MK là trung trực
=> MK là phân giác
=> ^AMK = ^BMK. (2)
Từ (1) và (2) => ^BMK = ^MCB. (3)
Vì tam giác BMK vuông tại K
=> ^BMK + ^MBK = 90°
Vì tam giác ABC vuông tại A
=> ^MBK + ^MBC = 90°
=> ^BMK = ^MBC. (4)
Từ (3) và (4) => ^MBC = ^MCB
bài làm
c) Xét tam giác BIA có:
AH vuông góc với BI
IK vuông góc với AB
Mà AH và IK cắt nhau ở M
=> M là trực tâm
=> BM vuông góc với IA ( đpcm )
d) Xét tam giác HMB và tam giác EMA có:
^MHB = ^MEA = 90°
Cạnh huyền: BM = AM ( cmt )
Góc nhọn: ^HMB = ^EMA ( đối )
=> Tam giác HMB = tam giác EMA ( ch-gn )
=> HM = ME
=> Tam giác MHE cân tại M
=> ^MHE = ^MEH
Xét tam giác MHE có:
^HME + ^MHE + ^MEH = 180°
=> ^HME + 2^MHE = 180°
=> 2^MHE = 180° - ^HME. (5)
Xét tam giác ABM cân tại M có:
^BMA + ^MBA + ^MAB = 180°
=> ^BMA + 2^MAB = 180°
=> 2^MAB = 180° - ^BMA. (6)
Mà ^HME = ^BMA ( đối ). (7)
Từ (5) và (6) và (7) => 2^MHE = 2^MAB
=> ^MHE = ^MAB
Mà hai góc này ở vị trí so le le trong
=> HE // AB
Hình bạn tự vẽ nha!
Ta có:
AH_|_BC(AH là đường cao tam giác ABC)
DK_|_BC(DK là đường trung trực của BC)
=>AH//DK(t/c đường thẳng song song)
=>góc AED=góc EDK(so le trong) (1)
=>góc BEH=góc EDK( 2 góc đồng vị) (2)
Từ (1),(2) suy ra:
góc AED=góc BEH=góc EDK=góc BDK(do E là giao điểm của AH và BD)
Mặt khác:
Xét tam giác BKD và tam giác DKC,có:
DK cạnh chung
BK=KC( K là trung điểm của BC)
góc BKD=góc DKC=1 vuông
=> tam giác BKD=tam giác DKC(c.g.c)
=>BD=DC
=>tam giác BDC cân tại D
Nên góc BDK=góc CDK(t/c tam giác cân) (3)
Lại do: AH//DK
=>góc CDK=góc DAH( 2 góc đồng vị) (4)
Từ (3),(4)=>góc BDK=góc DAH
Mà góc AED=góc BDK( so le trong)
E là giao điểm của BD và AH(gt)
Nên E nằm giữa BD và AH
=>góc DAE=góc DAH=góc AED
=>tam giác ADE cân tại D ( đpcm)