\(\Delta\)ABC có AB<AC.Phân giác \(\widehat{A}\)cắt BC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

A C B E D Xét tam giác vuông ABC và tam giác vuông ADE có :

AB=AD

AC=AE

=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông ) 

Bài làm

a) Xét ∆ABC vuông tại B có:

^BAC + ^C = 90°

Hay ^BAC + 30° = 90°

=> ^BAC = 60° 

Vì AD là phân giác của góc BAC.

=> ^DAC = 60°/2 = 30°

Xét tam giác ADC có:

^DAC + ^ACD + ^ADC = 180°

Hay 30° + 30° + ^ADC = 180°

=> ^ADC = 180° - 30° - 30°

=> ^ADC = 120°

b) Xét tam giác ABD và tam giác AED có:

AB = AE ( gt )

^BAD = ^EAD ( Do AD phân giác )

Cạnh AD chung.

=> ∆ABD = ∆AED ( c.g.c )

c) Vì ∆ABD = ∆AED ( cmt )

=> ^ABD = ^AED = 90°

=> DE vuông góc với AC tại E                (1)

Ta có: ^DAC = ^DCA = 30°

=> ∆DAC cân tại D.

=> AD = DC

Xét tam giác DEA và tam giác DEC có:

Góc vuông: ^DEA = ^DEC ( = 90° )

Cạnh huyền AD = DC ( cmt )

Góc nhọn: ^DAC = ^DCA ( cmt )

=> ∆DEA = ∆DEC ( g.c.g )

=> AE = EC 

=> E là trung điểm của AC.                       (2)

Từ (1) và (2) => DE là trung trực của AC ( đpcm )

19 tháng 7 2018

A B C D E H

a) xét \(\Delta ADE\) và \(\Delta ABC\) có

 \(AD=AB\)

  \(AE=AC\)

\(\widehat{BAC}=\widehat{DAE}=90^0\)

\(\Rightarrow\Delta ABC=\Delta ADE\left(c.g.c\right)\)

\(\Rightarrow DE=BC\)  ( 2 cạnh tương ứng = nhau)

12 tháng 1 2020

A B C D E F

  GT  

 △ABC: AB < AC. BAD = DAC = BAC/2 (D \in BC)

 E \in AC : AE = AB

 F \in AB : AF = AC

 KL

 a, △ABD = △AED

 b, AD ⊥ FC

 c, △BDF = △EDC ; BF = EC

 d, F, D, E thẳng hàng

Bài làm:

a, Xét △ABD và △AED

Có: AB = AE (gt)

    BAD = DAE (gt) 

 AD là cạnh chung

=> △ABD = △AED (c.g.c)

b, Vì △ABD = △AED (cmt)

=> BD = ED (2 cạnh tương ứng)

=> D thuộc đường trung trực của BE   (1)

Vì AB = AE (gt) => A thuộc đường trung trực của BE   (2)

Từ (1) và (2) => AD là đường trung trực của BE

=> AD ⊥ FC

c, Vì △ABD = △AED (cmt)

=> ABD = AED (2 góc tương ứng)

Ta có: ABD + DBF = 180o (2 góc kề bù)

AED + DEC = 180o (2 góc kề bù)

Mà ABD = AED (cmt)

=> DBF = DEC

Lại có: AB + BF = AF

AE + EC = AC

Mà AB = AE (gt) ; AF = AC (gt)

=> BF = EC

Xét △BDF và △EDC

Có: BD = ED (cmt)

    DBF = DEC (cmt)

      BF = EC (cmt)

=> △BDF = △EDC (c.g.c)

d, Vì △BDF = △EDC (cmt)

=> BDF = EDC (2 góc tương ứng)

Ta có: BDE + EDC = 180o (2 góc kề bù)

=> BDE + BDF = 180o

=> FDE = 180o

=> 3 điểm F, D, E thẳng hàng

Câu 1: 

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

Do đo: ΔABE=ΔHBE

b: Ta có:BA=BH

EA=EH
Do đó:BE là đường trung trực của AH

c: Ta có: EA=EH

mà EH<EC

nên EA<EC

a: Xét ΔADC và ΔAEB có

AD=AE
góc DAC chung

AC=AB

Do đó: ΔADC=ΔAEB

b: Xét ΔDBC và ΔECB có

DB=EC

BC chung

DC=EB

DO đo: ΔDBC=ΔECB

c: Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)

nên ΔIBC cân tại I

=>IB=IC

mà AB=AC

nên AI là đường trung trực của BC

hay AI\(\perp\)BC

d: Ta có: ΔABC cân tại A

mà AI là đườg cao

nên AI là phân giác của góc BAC

15 tháng 12 2017

A B C D 40 E F

a/ Theo định lí tổng ba góc của 1 tam giác, ta có:

\(\Delta ABC\) có: \(\widehat{B}+\widehat{A}+\widehat{C}=180^0\)

\(\widehat{B}=180^0-\left(90^0+40^0\right)=50^0\)

Vì BD là tia phân giác của góc \(\widehat{B}\) nên:

\(\widehat{ABD}=\widehat{DBC}=\dfrac{\widehat{B}}{2}=\dfrac{50^0}{2}=25^0\)

b/ Xét \(\Delta ABD\)\(\Delta EBD\) có:

\(AB=BE\left(gt\right)\)

\(\widehat{ABD}=\widehat{DBC}\left(cmt\right)\)

\(BD\) cạnh chung

Do đó \(\Delta ABD=\Delta EBD\left(c.g.c\right)\)

\(\Rightarrow\widehat{A}=\widehat{E}=90^0\) ( cạnh tương ứng ) hay \(DE\perp BC\)

c/ \(\Delta ABC\) vuông ở \(\widehat{A}\)\(\Delta EBF\) vuông ở \(\widehat{E}\) nên có:

\(BA=BE\left(gt\right)\)

\(\widehat{B}\) góc chung

Do đó \(\Delta ABC=\Delta EBF\) ( cạnh huyền - góc nhọn )