Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a) xét 2 tam giác vuông AIB và AIC có:
AI cạnh chung
AB=AC(gt)
=> tam giác AIB=tam giác AIC(cạnh huyền-cạnh góc vuông)
=> IB=IC=> I là trung điểm của BC
b) xét 2 tam giác vuông MIB và NIC có:
IB=IC(theo câu a)
\(\widehat{B}\)=\(\widehat{C}\)(gt)
=> tam giác MIB =tam giác NIC(CH-GN)
=> MB=NC mà AB=AC=> AM=AN
=> tam giác AMN cân tại A
c)
A B C I M N K
Kí hiệu tam giác viết là t/g nhé
a) BI là phân giác ABC nên ABI = CBI
Xét t/g BID vuông tại D và t/g BIF vuông tại F có:
BI là cạnh chung
DBI = FBI (cmt)
Do đó, t/g BID = t/g BIF ( cạnh góc vuông và góc nhọn kề) (đpcm)
b) t/g BID = t/g BIF (câu a) => ID = IF (2 cạnh tương ứng) (1)
C/m tương tự câu a ta cũng có: t/g ADI = t/g AEI ( cạnh góc vuông và góc nhọn kề)
=> ID = IE (2 cạnh tương ứng)
Từ (1) và (2) => ID = IE = IF (đpcm)
ban tu ve hinh nhe
a) Xet tam giac BID va tam giac BIF co:
BI:canh chung
goc DBI=goc IBF(vi tia BI la tia phan giac cua goc DBF)
goc BDI=goc BFI(=90do)
Vay tam giac BID=tam giac BIF(canh huyen, goc nhon)
b) Vi tam giac BID=tam giac BIF(cau a)
Nen ID=IF(2 canh tuong ung) (1)
Xet tam giac AID va tam giac AIE co:
AI:canh chung
goc DAI=goc EAI(vi tia AI la tia phan giac cua goc DAE)
goc ADI=goc AEI(=90do)
Nen tam giac AID=tam giac AIE(canh huyen,goc nhon)
Suy ra:ID=IE(2 canh ung) (2)
Tu (1), (2)\(\Rightarrow\) IF=ID=IE
Chuc ban ngay cang hoc gioi len nhe
Hen gap lai ban vao dip khac nhe
A B C D E F I 1 2
*Bài dài quá, mk tóm tắt cách làm rồi bạn diễn giải ra nha*
a) Để chứng minh \(\Delta ADB=\Delta ADC\), ta chứng minh theo trường hợp cạnh - góc - cạnh
- Ta thấy có AD là cạnh chung
- \(\widehat{A_1}=\widehat{A_2}\) do phân giác
- AB = AC do \(\Delta ABC\) cân
b) Để chứng minh \(\Delta AED=\Delta AFD\), ta chứng minh theo trường hợp cạnh huyền - góc nhọn của tam giác vuông
- Dễ dàng chứng minh 2 tam giác này vuông lần lượt tại E, F
- AD là cạnh chung
- \(\widehat{A_1}=\widehat{A_2}\)
c) Để chứng minh \(\Delta BDE=\Delta CDF\), ta chứng minh theo trường hợp cạnh huyền - góc nhọn của tam giác vuông
- Dễ thấy ED = DF do \(\Delta AED=\Delta AFD\)
- BD = DC
(do AD là phân giác của \(\Delta ABC\) mà \(\Delta ABC\) cân tại A nên AD cũng là trung tuyến. Suy ra D là trung điểm CD nên BD=DC)
d) Để chứng minh AD là trung trực BC, ta phải chứng minh D là trung điểm BC và AD vuông góc BC
- Đã có D là trung điểm BC do cmt
- AD vuông góc BC do AD là phân giác của \(\Delta ABC\) mà \(\Delta ABC\) cân tại A nên AD cũng là đường cao.
e) Để chứng minh \(I\in AD\) mà I là trung trực EF thì ta chứng minh AD là trung trực EF
Để chứng minh AD là trung trực EF, ta phải có AE = AF, ED = DF (cmt do \(\Delta AED=\Delta AFD\))
a) xét tam giác AHB và tam giác AHC
có AH là cạnh chung
AB = AC (gt)
BH = CH ( H là trung điểm của BC )
=> tam giác ABH = tam giác ACH ( c-g-c )
=> góc BAH = góc CAH ( 2 góc tương ứng)
b) tam giác AEH vuông tại E
=> góc EAH + góc EHA = 90 độ ( 2 góc nhọn phụ nhau )
tam giác AFH vuông tại F
=>góc FAH + góc FHA = 90 độ (2 góc nhọn phụ nhau)
mà gócEAH = góc FAH ( 2 góc tương ứng của tam giác BAH = tam giác CAH)
=> góc AHE = góc AHF
xét tam giác AHE và tam giác AHF
có góc EAH = góc FAH ( cm câu a)
AH là cạnh chung
góc AHE = góc AHF ( cm trên )
=> tam giác AHE = tam giác AHF (g-c-g )
=>AE= AF (2 cạnh tương ứng )
=> tam giác AEF cân tại A
c) có BC= 6 cm
mà có H là trung điểm của BC
=> BH = CH = 3cm
xét tam giác ABH vuông tại H
=>AH^2 + BH^2 = AB^2 ( định lý py-ta-go )
=>AH^2 = AB^2 - BH^2
AH^2 = 5^2 - 3^2 (vì AB = 5 cm; BH = 3 cm )
AH^2 = 16
AH= 4 (cm)
A B C E F H 1 2
a) Xét hai tam giác vuông AHB và AHC có:
AB = AC (do \(\Delta ABC\) cân tại A)
HB = HC (gt)
AH: cạnh chung
Vậy: \(\Delta AHB=\Delta AHC\left(c-c-c\right)\)
b) Xét hai tam giác vuông AEH và AFH có:
\(\widehat{A_1}=\widehat{A_2}\) (\(\Delta AHB=\Delta AHC\))
AH: cạnh huyền chung
Vậy: \(\Delta AEH=\Delta AFH\left(ch-gn\right)\)
Suy ra: AE = AF (hai cạnh tương ứng)
Do đó: \(\Delta AHF\) cân tại A
c) Vì H là trung điểm của BC
=> AH là đường trung tuyến của \(\Delta ABC\)
\(\Delta ABC\) cân tại A có AM là đường trung tuyến đồng thời là đường cao
Ta có: HB = HC = \(\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
\(\Delta ABH\) vuông tại H, theo định lí Py-ta-go
Ta có: \(AB^2=AH^2+HB^2\)
\(\Rightarrow AH^2=AB^2-HB^2\)
\(AH^2=5^2-3^2\)
\(AH^2=16\)
\(\Rightarrow AH=\sqrt{16}=4\left(cm\right)\)
A B C D E F
GT | △ABC: AB < AC. BAD = DAC = BAC/2 (D BC) E AC : AE = AB F AB : AF = AC |
KL | a, △ABD = △AED b, AD ⊥ FC c, △BDF = △EDC ; BF = EC d, F, D, E thẳng hàng |
Bài làm:
a, Xét △ABD và △AED
Có: AB = AE (gt)
BAD = DAE (gt)
AD là cạnh chung
=> △ABD = △AED (c.g.c)
b, Vì △ABD = △AED (cmt)
=> BD = ED (2 cạnh tương ứng)
=> D thuộc đường trung trực của BE (1)
Vì AB = AE (gt) => A thuộc đường trung trực của BE (2)
Từ (1) và (2) => AD là đường trung trực của BE
=> AD ⊥ FC
c, Vì △ABD = △AED (cmt)
=> ABD = AED (2 góc tương ứng)
Ta có: ABD + DBF = 180o (2 góc kề bù)
AED + DEC = 180o (2 góc kề bù)
Mà ABD = AED (cmt)
=> DBF = DEC
Lại có: AB + BF = AF
AE + EC = AC
Mà AB = AE (gt) ; AF = AC (gt)
=> BF = EC
Xét △BDF và △EDC
Có: BD = ED (cmt)
DBF = DEC (cmt)
BF = EC (cmt)
=> △BDF = △EDC (c.g.c)
d, Vì △BDF = △EDC (cmt)
=> BDF = EDC (2 góc tương ứng)
Ta có: BDE + EDC = 180o (2 góc kề bù)
=> BDE + BDF = 180o
=> FDE = 180o
=> 3 điểm F, D, E thẳng hàng
A B C I F E
a) Xét \(\Delta ABI,\Delta ACI\) có :
\(AB=AC\) (ΔABC cân tại A)
\(\widehat{AIB}=\widehat{AIC}\left(=90^o\right)\)
\(\widehat{ABI}=\widehat{ACI}\) (ΔABC cân tại A)
=> \(\Delta ABI=\Delta ACI\) (cạnh huyền - góc nhọn)
=> BI = CI (2 cạnh tương ứng)
=> I là trung điểm của BC.
b) Xét \(\Delta AEI,\Delta AFI\) có :
\(AE=AF\left(gt\right)\)
\(\widehat{EAI}=\widehat{FAI}\) (do \(\Delta ABI=\Delta ACI\) - cm câu a)
\(AI:Chung\)
=> \(\Delta AEI=\Delta AFI\left(c.g.c\right)\)
=> \(IE=IF\) (2 cạnh tương ứng)
=> ΔIEF cân tại I.
c) Ta có : \(\left\{{}\begin{matrix}AB=AC\left(\text{(ΔABC cân tại A)}\right)\\AE=AF\left(gt\right)\end{matrix}\right.\)
Lại có : \(\left\{{}\begin{matrix}E\in AB\\F\in AC\end{matrix}\right.\left(gt\right)\Rightarrow\left\{{}\begin{matrix}AB=AE+BE\\AC=AF+FC\end{matrix}\right.\)
Nên : \(AB-AE=AC-AF\)
\(\Leftrightarrow BE=CF\)
Xét \(\Delta EBI,\Delta FCI\) có :
\(BE=CF\left(cmt\right)\)
\(BI=CI\) (I là trung điểm của BC)
\(IE=IF\) (tam giác IEF cân tại I)
=> \(\Delta EBI=\Delta FCI\left(c.c.c\right)\)
=> đpcm.