Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Xét tam giác AMH và tam giác NMB có
MA = MN [ gt ]
góc AMH = góc NMB [ đối đỉnh ]
HM = BM [ gt ]
Do đó ; tam giác AMH = tam giác NMB [ c.g.c ]
\(\Rightarrow\)góc AHM = góc NBM
mà bài cho góc AHM = 90độ
\(\Rightarrow\)góc NBM = 90độ
Vậy NB vuông góc với BC
b.Theo câu a ; tam giác AMH = tam giác NMB
\(\Rightarrow\)AH = NB [ cạnh tương ứng ]
Mặt khác ; Xét tam giác AHB vuông tại H có
AB lớn hơn AH
\(\Rightarrow\)AB lớn hơn NB
xét tam giác AMH và tam giác NMB có : AM = MN (gt)
BM = MH do M là trung điểm của BH (gt)
góc AMH = góc NMB (đối đỉnh)
=> tam giác AMH = tam giác NMB (c - g - c)
=> góc AHM = góc NBM (đn)
mà góc AHM = 90 do AH _|_ BC (gt)
=> góc NBM = 90
=> BN _|_ BC (đn)
Do \(\Delta\)ABC cân tại A nên AH là đường cao đồng thời là đường trung tuyến
Ta có:H là trung điểm BC,I là trung điểm CN
Áp dụng định lý sau: "đoạn thẳng nối trung điểm 2 cạnh bất kì của một tam giác thì song song với cạnh còn lại và bằng nửa cạnh ấy, đoạn thẳng này gọi là đường trung bình" cho tam giác BCN thì: HI//BN
Mà: HAM=BNM (suy ra trực tiếp từ kết quả câu a)
=>AH//BN
Theo Tiên đề Euclid thì AH trùng HI hay A;H;I thẳng hàng
a) Tam giác ABC cân tại A nên \(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
Hay \(\widehat{ABD}=\widehat{ACE}\)
Theo định lý Cos ta có
\(AD=\sqrt{DB^2+AB^2-2\cdot DB\cdot AB\cdot\cos DBA}\)
\(AE=\sqrt{AC^2+CE^2-2\cdot AC\cdot CE\cdot\cos ACE}\)
Vì AB = AC ( tam giác ABC cân tại A ) và DB =CE và góc DBA = góc ACE
Nên AD = AE hay tam giác ADE cân tại A
b)\(\widehat{ADB}=\widehat{AEC}\)(ADE cân)
Nên góc KCE = góc DBH
Vậy \(\widehat{HBA}=\widehat{KCA}\)( góc DBA = góc ACE)
Xét tam giác HBA và tam giác ACK vuông có :
+ góc HBA = góc KCA
+ AB = AC
\(\Rightarrow\Delta HBA=\Delta KCA\left(ch-gn\right)\)=> HB = KC (hai cạnh tương ứng)
c) Ta có \(180^0=\widehat{HBA}+\widehat{ABC}+\widehat{OBC}\)
\(180^0=\widehat{ACK}+\widehat{ACB+\widehat{OCB}}\)
\(\widehat{HBA}=\widehat{ACK}\)
\(\widehat{ABC}=\widehat{ACB}\)
Nên \(\widehat{OCB}=\widehat{OBC}\)hay tam giâc OBC cân tại O
d) Xét tam giác AMB và tam giác AMC
+ AM chung
+ BM = MC (gt)
+ AB = AC (gt)
Vậy hai tam giác trên bằng nhau theo trường hợp c-c-c
Và hai góc BAM = góc CAM
Hay AM là tia phân giác của góc BAC
Xét tam giác AOB và tam giác ACO
+ AB = AC (gt)
+ OB = OC (cmt )
+ góc ABO = góc ACO vì \(\widehat{ABM+\widehat{OBC}=\widehat{ACM}+\widehat{OCB}}\)
Vậy hai tam giác trên bằng nhau theo trường hợp c-g-c
Và góc BAO = góc CAO
Hay AO là phân giác của góc BAC
Một góc chỉ có duy nhất một tia phân giác nên AM và AO là một hay A,M,O thẳng hàng
Câu hỏi của Vy Hà Khánh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo nhé!
a) áp dụng định lý Pytago cho tam giác ABC vuông tại A có:
AB2+AC2=BC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8\left(cm\right)\left(AC>0\right)\)
a) Xét \(\Delta AMH\) và \(\Delta NMB\) có:
\(AM=NM\) (gt)
\(\widehat{AMH}=\widehat{NMB}\) (đối đỉnh)
\(MH=MB\) (suy từ gt)
\(\Rightarrow\Delta AMH=\Delta NMB\) (c.g.c)
\(\Rightarrow NB=AH\)
Ta có: \(AH< AB\) (quan hệ đường xiên - đvg)
\(\Rightarrow NB< AB\)
b) t nghĩ câu này sai đề, 2 góc đó k = nhau đc đâu.